ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:227.69KB ,
资源ID:3814784      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3814784.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2020-2021学年高中数学(北师大版-必修一)课时作业-第二章第五节-函数.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020-2021学年高中数学(北师大版-必修一)课时作业-第二章第五节-函数.docx

1、 §5 简洁的幂函数 课时目标 1.把握幂函数的概念.2.生疏α=,1,2,3,-1时幂函数y=xα的图像与性质.3.理解奇、偶函数的定义及图像的性质. 1.假如一个函数,底数是自变量x,指数是常量α,即y=xα,这样的函数称为________. 2.一般地,图像关于______对称的函数叫作奇函数,图像关于y轴对称的函数叫作偶函数. 3.(1)一般地,假如对于函数f(x)的定义域内______一个x,都有________,那么函数f(x)确定是偶函数. (2)一般地,假如对于函数f(x)的定义域内______一个x,都有________,那么函数f(x)确定是奇函数.

2、 4.幂函数y=xα,当α=2k(k∈Z)时,y=xα是______函数,当α=2k-1 (k∈Z)时,y=xα是______函数.(填“奇”或“偶”) 一、选择题 1.下列函数中不是幂函数的是(  ) A.y= B.y=x3 C.y=2x D.y=x-1 2.幂函数f(x)的图像过点(4,),那么f(8)的值为(  ) A. B.64 C.2 D. 3.下列是y=的图像的是(  )

3、 4.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)是(  ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 5.f(x)是定义在R上的奇函数,下列结论中,不正确的是(  ) A.f(-x)+f(x)=0 B.f(-x)-f(x)=-2f(x) C.f(x)·f(-x)≤0 D.=-1 6.下面四个结论:①偶函数的图像确定与y轴相交;②奇函数的图像确定过原点;③偶函数的图像关于y轴对称;④没有一个函数既是奇函数,又是偶函数. 其中正确的命题个数是(  ) A.1

4、 B.2 C.3 D.4 题 号 1 2 3 4 5 6 答 案 二、填空题 7.已知函数y=x-2m-3的图像过原点,则实数m的取值范围是____________________. 8.偶函数y=f(x)的定义域为[t-4,t],则t=______________. 9.已知奇函数f(x)的定义域为R,且对于任意实数x都有f(x+4)=f(x),又f(1)=4,那么f[f(7)]=________. 三、解答题 10.推断下列函数的奇偶性: (1)f(x)=3,x∈R; (

5、2)f(x)=5x4-4x2+7,x∈[-3,3]; (3)f(x)=|2x-1|-|2x+1|; (4)f(x)= 11.已知函数f(x)=(m2+2m)·,m为何值时,函数f(x)是:(1)正比例函数; (2)反比例函数; (3)二次函数;(4)幂函数. 力气提升 12.如图,幂函数y=x3m-7(m∈N)的图像关于y轴对称,且与x轴、y轴均无交点,求此函数的解析式. 13.已知奇函数f(x)=. (1)求实数m的值,并在给出的直角坐

6、标系中画出y=f(x)的图像; (2)若函数f(x)在区间[-1,a-2]上单调递增,试确定a的取值范围. 1.幂函数在第一象限内指数变化规律: 在第一象限内直线x=1的右侧,图像从上到下,相应的指数由大变小;在直线x=1的左侧,图像从下到上,相应的指数由大变小. 2.幂函数y=xα的单调性,在(0,+∞)上,α>0时为增函数,α<0时为减函数. 3.函数奇偶性 (1)从函数奇偶性定义来看,奇、偶函数的定义域确定关于原点对称,否则此函数是非奇非偶函数. (2)函数f(x)=c(c是常数)是偶函数,当c=0时,该函数既是奇函数

7、又是偶函数. 4.函数的奇偶性与图像的对称性的关系 (1)若一个函数是奇函数,则其图像关于原点对称,反之,若一个函数图像关于原点中心对称,则其确定是奇函数. (2)若一个函数是偶函数,则其图像关于y轴对称,反之,若一个函数图像关于y轴成轴对称,则其必为偶函数. §5 简洁的幂函数 学问梳理 1.幂函数 2.原点 3.(1)任意 f(-x)=f(x) (2)任意 f(-x)=-f(x) 4.偶 奇 作业设计 1.C [依据幂函数的定义:形如y=xα的函数称为幂函数,选项C中自变量x的系数是2,不符合幂函数的定义,所以C不是幂函数.] 2.A [设幂函数为y=xα,依题意,

8、=4α, 即22α=2-1,∴α=-. ∴幂函数为y=,∴f(8)====.] 3.B [y==,∴x∈R,y≥0,f(-x)== =f(x),即y=是偶函数,又∵<1,∴图像上凸.] 4.B [F(-x)=f(-x)+f(x)=F(x). 又x∈(-a,a)关于原点对称, ∴F(x)是偶函数.] 5.D [∵f(-x)=-f(x),A、B明显正确, 由于f(x)·f(-x)=-[f(x)]2≤0,故C正确. 当x=0时,由题意知f(0)=0,故D错误.] 6.A [函数y=是偶函数,但不与y轴相交,故①错; 函数y=是奇函数,但不过原点,故②错; 函数f(x)=0既

9、是奇函数又是偶函数,故④错.] 7.m<- 解析 由幂函数的性质知-2m-3>0, 故m<-. 8.2 解析 偶函数的定义域应当关于原点对称,故t-4=-t,得t=2. 9.0 解析 ∵f(7)=f(3+4)=f(3)=f(-1+4)=f(-1) =-f(1)=-4, ∴f[f(7)]=f(-4)=-f(4)=-f(0+4)=-f(0)=0. 10.解 (1)f(-x)=3=f(x), ∴f(x)是偶函数. (2)∵x∈[-3,3],f(-x)=5(-x)4-4(-x)2+7 =5x4-4x2+7=f(x),∴f(x)是偶函数. (3)f(-x)=|-2x-1|-|

10、-2x+1|=-(|2x-1|-|2x+1|)=-f(x), ∴f(x)是奇函数. (4)当x>0时,f(x)=1-x2,此时-x<0, ∴f(-x)=(-x)2-1=x2-1,∴f(-x)=-f(x); 当x<0时f(x)=x2-1, 此时-x>0,f(-x)=1-(-x)2=1-x2, ∴f(-x)=-f(x); 当x=0时,f(-0)=-f(0)=0. 综上,对x∈R,总有f(-x)=-f(x), ∴f(x)为R上的奇函数. 11.解 (1)若f(x)为正比例函数, 则⇒m=1. (2)若f(x)为反比例函数, 则⇒m=-1. (3)若f(x)为二次函数,则

11、 ⇒m=. (4)若f(x)为幂函数,则m2+2m=1, ∴m=-1±. 12.解 由题意,得3m-7<0. ∴m<. ∵m∈N,∴m=0,1或2, ∵幂函数的图像关于y轴对称, ∴3m-7为偶数. ∵m=0时,3m-7=-7, m=1时,3m-7=-4, m=2时,3m-7=-1. 故当m=1时,y=x-4符合题意. 即y=x-4. 13.解 (1)当x<0时,-x>0,f(-x)=-(-x)2+2(-x) =-x2-2x. 又f(x)为奇函数, ∴f(-x)=-f(x)=-x2-2x, ∴f(x)=x2+2x,∴m=2. y=f(x)的图像如图所示. (2)由(1)知f(x) =, 由图像可知,f(x)在[-1,1]上单调递增, 要使f(x)在[-1,a-2]上单调递增,只需, 解得1

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服