ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:79.46KB ,
资源ID:3814086      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3814086.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学(北师大版)选修2-2教案:第1章-解题思想方法:反证法.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学(北师大版)选修2-2教案:第1章-解题思想方法:反证法.docx

1、反证法与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:确定题设而否定结论,从而导出冲突推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若确定定理的假设而否定其结论,就会导致冲突”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的规律推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,冲突的缘由是假设不成立,所以确定了命题的结论,从而使命题获得了证明。反证法所依据的是规律思维规律中的“冲突律”和“排中律”。在同一思维过程中,两个相互冲突的推断不能同时都为真,至

2、少有一个是假的,这就是规律思维中的“冲突律”;两个相互冲突的推断不能同时都假,简洁地说“A或者非A”,这就是规律思维中的“排中律”。反证法在其证明过程中,得到冲突的推断,依据“冲突律”,这些冲突的推断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再依据“排中律”,结论与“否定的结论”这一对立的相互否定的推断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以规律思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为“否定推理否定”。即从否定结论开头,经过正确无误的推理导致规律冲突,达到新

3、的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 推导出冲突 结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;其次步,归谬:将反设作为条件,并由此通过一系列的正确推理导出冲突;第三步,结论:说明反设不成立,从而确定原命题成立。在应用反证法证题时,确定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,假如欲证明的命题的方面状况只有一种,那么只要将这种状况驳倒了就可以,这种反证法又叫“归谬法”;假如结论的方面状况有多种,那么必需将全部的反面状况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。在数学解题中经常使用反证法,牛顿曾

4、经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式毁灭的命题;或者否定结论更明显。具体、简洁的命题;或者直接证明难以下手的命题,转变其思维方向,从结论入手进行反面思考,问题可能解决得格外干脆。、再现性题组:1. 已知函数f(x)在其定义域内是减函数,则方程f(x)0 _。A.至多一个实根 B.至少一个实根 C.一个实根 D.无实根2. 已知a0,1bab ab B. ababa C. aba ab D. ab aba3. 已知l,a ,b ,若a、b为异面直线,则_。A. a、b都与l相交 B.

5、a、b中至少一条与l相交C. a、b中至多有一条与l相交 D. a、b都与l相交4. 四周体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_。(97年全国理)A. 150种 B. 147种 C. 144种 D. 141种【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个与特例冲突,选A;2小题:接受“特殊值法”,取a1、b0.5,选D;3小题:从逐一假设选择项成立着手分析,选B;4小题:分析清楚结论的几种状况,列式是:CC436,选D。、示范性题组:例1. 如图,设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点。求证:AC与平面SOB不垂直。【分析】

6、结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出冲突后,再确定“不垂直”。【证明】 假设AC平面SOB, 直线SO在平面SOB内, ACSO, SO底面圆O, SOAB, SO平面SAB, 平面SAB底面圆O,这明显毁灭冲突,所以假设不成立。即AC与平面SOB不垂直。【注】否定性的问题常用反证法。例如证明异面直线,可以假设共面,再把假设作为已知条件推导出冲突。例2. 若下列方程:x4ax4a30, x(a1)xa0, x2ax2a0至少有一个方程有实根。试求实数a的取值范围。【分析】 三个方程至少有一个方程有实根的反面状况仅有一种:三个方程均没有实根。先求出反面状况时a的

7、范围,再所得范围的补集就是正面状况的答案。【解】 设三个方程均无实根,则有:,解得,即a1。所以当a1或a时,三个方程至少有一个方程有实根。【注】“至少”、“至多”问题经常从反面考虑,有可能使状况变得简洁。本题还用到了“判别式法”、“补集法”(全集R),也可以从正面直接求解,即分别求出三个方程有实根时(0)a的取值范围,再将三个范围并起来,即求集合的并集。两种解法,要求对不等式解集的交、并、补概念和运算理解透彻。例3. 给定实数a,a0且a1,设函数y (其中xR且x),证明:.经过这个函数图像上任意两个不同点的直线不平行于x轴; .这个函数的图像关于直线yx成轴对称图像。(88年全国理)。【

8、分析】“不平行”的否定是“平行”,假设“平行”后得出冲突从而推翻假设。【证明】 设M(x,y)、M(x,y)是函数图像上任意两个不同的点,则xx,假设直线MM平行于x轴,则必有yy,即,整理得a(xx)xxxx a1, 这与已知“a1”冲突, 因此假设不对,即直线MM不平行于x轴。 由y得axyyx1,即(ay1)xy1,所以x,即原函数y的反函数为y,图像全都。由互为反函数的两个图像关于直线yx对称可以得到,函数y的图像关于直线yx成轴对称图像。【注】对于“不平行”的否定性结论使用反证法,在假设“平行”的状况下,简洁得到一些性质,经过正确无误的推理,导出与已知a1相互冲突。第问中,对称问题使用反函数对称性进行争辩,方法比较奇异,要求对反函数求法和性质运用娴熟。、巩固性题组:1. 已知f(x),求证:当xx时,f(x)f(x)。2. 已知非零实数a、b、c成等差数列,ac,求证:、不行能成等差数列。3. 已知f(x)xpxq,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于 。4. 求证:抛物线y1上不存在关于直线xy0对称的两点。5. 已知a、bR,且|a|b|1,求证:方程xaxb0的两个根的确定值均小于1。6. 两个相互垂直的正方形如图所示,M、N在相应对角线上,且有EMCN,求证:MN不行能垂直CF。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服