ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:140.20KB ,
资源ID:3813544      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3813544.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2020-2021学年人教A版高中数学必修2双基限时练13.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020-2021学年人教A版高中数学必修2双基限时练13.docx

1、 双基限时练(十三) 1.梯形ABCD中,AB∥CD,AB⊂平面α,则直线CD与平面α内的直线的位置关系只能是(  ) A.平行        B.平行或异面 C.平行或相交 D.异面或相交 答案 B 2.已知平面α∥β,P是α,β外一点,过点P的直线m与α,β分别交于A,C,过点P的直线n与α,β分别交于B,D,且PA=6,AC=9,PD=8,则BD的长为(  ) A.16 B.24或 C.14 D.20 解析 当点P在平面α与β的同侧时,由平行线截线段成比例知,=.即=,解得BD=.当P在平面α与β之间时,同理可求得BD=24. 答案 B 3.α,β,γ是

2、三个两两平行的平面,且α与β之间的距离是3,α与γ之间的距离是4,则β与γ之间的距离的取值范围是(  ) A.{1} B.{7} C.{1,7} D.[1,7] 答案 C 4.已知平面α∥平面β,它们之间的距离为d,直线a⊂α,则在β内与直线a相距为2d的直线有(  ) A.一条 B.两条 C.很多条 D.不存在 答案 B 5.给出下列互不相同的直线l,m,n和平面α,β,γ的三个命题: ①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n. 其中真命题的个数为(  )

3、 A.3 B.2 C.1 D.0 解析 ①中α与β也可能相交,∴①错;在②中l与m也可能异面,∴②错,③正确. 答案 C 6.在空间四边形ABCD中,N,M分别是BC,AD的中点,则2MN与AB+CD的大小关系是________. 解析 如图,取BD的中点P,连接PM,PN,则PM=AB,PN=CD,在△PMN中,MN

4、 ∵BC∥平面α,平面α∩平面ABC=MN, ∴BC∥MN. 又G为△ABC的重心,∴AG:GD=2:1, ∴AG:AD=2:3,∴MN:BC=2:3. ∴MN=BC=. 答案  8.已知平面α∥β∥γ,两条直线l,m分别与平面α,β,γ相交于A,B,C与D,E,F,已知AB=6,DE:DF=2:5,则AC=________. 解析 由平行平面的性质定理,知 AD∥BE∥CF,∴=. ∴AC=×AB=×6=15. 答案 15 9.如图,两条异面直线AC、DF与三个平行平面α,β,γ分别交于A,B,C和D,E,F,又AF,CD分别与β交于G,H,求证:HEGB是平行四边形.

5、 证明 ∵AC∩CD=C, ∴AC,CD确定平面ACD. 又α∥β,平面ACD与α,β交于AD,BH, ∴AD∥BH. 又AF∩DF=F, ∴AF,FD确定平面AFD. 又∵α∥β,平面AFD交α,β于AD,GE, ∴AD∥GE. ∴BH∥GE. 同理BG∥HE. ∴四边形HEGB是平行四边形. 10.如图所示,在空间六边形(即六个顶点中没有任何五点共面)ABCC1D1A1中,每相邻的两边相互垂直,边长均等于a,并且AA1∥CC1. 求证:平面A1BC1∥平面ACD1. 证明 首先将图形补成正方体框架,如图②所示. 则在正方体ABCD-A1B1C1D1

6、中,证平面A1BC1∥平面ACD1. 由正方体的性质易,知AC∥A1C1,又AC⊄平面A1BC1, ∴AC∥平面A1BC1,同理可证CD1∥平面A1BC1. 又AC∩CD1=C,∴平面A1BC1∥平面ACD1. 11.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=a,点E在PD上,且PE:ED=2:1. 问在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论. 证明 如图,当F为PC的中点时,BF∥面AEC. 取PE的中点M,连接FM, 则FM∥CE.① 由EM=PE=ED知,E是MD的中点,连接BM,BD.设BD∩AC

7、=O则O为BD的中点,∴BM∥OE.② 由①②知:平面BFM∥平面ACE,又BF⊂平面BFM,∴BF∥平面AEC. 12.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1分别是棱AD、AA1的中点.设F是棱AB的中点,证明:直线EE1∥平面FCC1. 证明 ∵F为AB的中点,CD=2,AB=4,AB∥CD,∴CD綊AF. ∴四边形AFCD是平行四边形. ∴AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,AD∩DD1=D,AD⊂平面ADD1A1,DD1⊂平面ADD1A1, ∴平面ADD1A1∥平面FCC1, 又EE1⊂平面ADD1A1,EE1⊄平面FCC1, ∴EE1∥平面FCC1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服