ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:83.41KB ,
资源ID:3813496      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3813496.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2021届高中数学人教版高考复习知能演练轻松闯关-第二章第11课时.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021届高中数学人教版高考复习知能演练轻松闯关-第二章第11课时.docx

1、 [基础达标] 1.(2022·海淀区期中练习)已知曲线f(x)=ln x在点(x0,f(x0))处的切线经过点(0,-1),则x0的值为(  ) A. B.1 C.e D.10 解析:选B.依题意得,题中的切线方程是y-ln x0=(x-x0);又该切线经过点(0,-1),于是有-1-ln x0=(-x0),由此得ln x0=0,x0=1. 2.(2022·河南郑州市质量检测)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x,则f′(e)=(  ) A.1 B.-1 C.-e-1 D.-e 解析:选C.依题意得,f′(x)=2f

2、′(e)+,取x=e得f′(e)=2f′(e)+,由此解得f′(e)=-=-e-1. 3.(2022·河南郑州市质量猜想)直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值为(  ) A.2 B.-1 C.1 D.-2 解析:选C.∵直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),y=x3+ax+b的导数y′=3x2+A. ∴ 4.f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足(  ) A.f(x)=g(x) B.f(x)=g(x)=0 C.f(x)-g(

3、x)为常数函数 D.f(x)+g(x)为常数函数 解析:选C.由f′(x)=g′(x),得f′(x)-g′(x)=0, 即[f(x)-g(x)]′=0,所以f(x)-g(x)=C(C为常数). 5.(2022·东北三校联考)已知函数f(x)=+1,g(x)=aln x,若在x=处函数f(x)与g(x)的图象的切线平行,则实数a的值为(  ) A. B. C.1 D.4 解析:选A.由题意可知f′(x)=x-,g′(x)=,由f′()=g′(),得×()-=,可得a=,经检验,a=满足题意. 6.(2021·高考广东卷)若曲线y=kx+ln x在点(1,k)处的切线平行

4、于x轴,则k=________. 解析:函数y=kx+ln x的导函数为y′=k+,由导数y′|x=1=0,得k+1=0,则k=-1. 答案:-1 7.函数y=的导数为________. 解析:y′==. 答案: 8.(2022·广东广州市调研)若直线y=2x+m是曲线y=xln x的切线,则实数m的值为________. 解析:设切点为(x0,x0ln x0),由y′=(xln x)′=ln x+x·=ln x+1,得切线的斜率k=ln x0+1,故切线方程为y-x0ln x0=(ln x0+1)(x-x0),整理得y=(ln x0+1)x-x0,与y=2x+m比较得,解得x0

5、=e,故m=-e. 答案:-e 9.求下列函数的导数. (1)y=x·tan x; (2)y=(x+1)(x+2)(x+3); (3)y=3sin 4x. 解:(1)y′=(x·tan x)′=x′tan x+x(tan x)′ =tan x+x·′=tan x+x· =tan x+. (2)y′=(x+1)′(x+2)(x+3)+(x+1)[(x+2)(x+3)]′=(x+2)(x+3)+(x+1)(x+2)+(x+1)(x+3)=3x2+12x+11. (3)y′=(3sin 4x)′=3cos 4x·(4x)′=12cos 4x. 10.已知点M是曲线y=x3-2x

6、2+3x+1上任意一点,曲线在M处的切线为l,求: (1)斜率最小的切线方程; (2)切线l的倾斜角α的取值范围. 解:(1)y′=x2-4x+3=(x-2)2-1≥-1, ∴当x=2时,y′=-1,y=, ∴斜率最小的切线过, 斜率k=-1, ∴斜率最小的切线方程为x+y-=0. (2)由(1)得k≥-1, ∴tan α≥-1, ∴α∈∪. [力气提升] 1.(2022·河南洛阳统考)已知函数f(x)=3x+cos 2x+sin 2x,a=f′(),f′(x)是f(x)的导函数,则过曲线y=x3上一点P(a,b)的切线方程为(  ) A.3x-y-2=0 B.4x

7、-3y+1=0 C.3x-y-2=0或3x-4y+1=0 D.3x-y-2=0或4x-3y+1=0 解析:选A.由f(x)=3x+cos 2x+sin 2x得f′(x)=3-2sin 2x+2cos 2x,则a=f′()=3-2sin+2cos=1.由y=x3得y′=3x2,过曲线y=x3上一点P(a,b)的切线的斜率k=3a2=3×12=3.又b=a3,则b=1,所以切点P的坐标为(1,1),故过曲线y=x3上的点P的切线方程为y-1=3(x-1),即3x-y-2=0. 2.(2022·河南商丘调研)等比数列{an}中,a1=2,a8=4,f(x)=x(x-a1)(x-a2)…(x-

8、a8),f′(x)为函数f(x)的导函数,则f′(0)=(  ) A.0 B.26 C.29 D.212 解析:选D.∵f(x)=x(x-a1)(x-a2)…(x-a8), ∴f′(x)=x′(x-a1)…(x-a8)+x[(x-a1)…(x-a8)]′ =(x-a1)…(x-a8)+x[(x-a1)…(x-a8)]′, ∴f′(0)=(-a1)·(-a2)·…·(-a8)+0=a1·a2·…·a8=(a1·a8)4=(2×4)4=(23)4=212. 3.(2022·广东广州调研)设f1(x)=cos x,定义fn+1(x)为fn(x)的导数,即fn+1(x)=[fn(

9、x)]′,n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2 015(A)=-1,则sin A的值是________. 解析:∵f1(x)=cos x,∴f2(x)=[f1(x)]′=-sin x,f3(x)=[f2(x)]′=-cos x,f4(x)=[f3(x)]′=sin x,f5(x)=[f4(x)]′=cos x,…,∴fn(x)+fn+1(x)+fn+2(x)+fn+3(x)=0,∴f1(A)+f2(A)+…+f2 015(A)=f1(A)+f2(A)+f3(A)=-sin A=-1, ∴sin A=1. 答案:1 4.(2022·浙江宁波四中高三月考)给出定

10、义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″ (x)=(f′(x))′.若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在上是凸函数的是________(把你认为正确的序号都填上). ①f(x)=sin x+cos x;②f(x)=ln x-2x;③f(x)=-x3+2x-1;④f(x)=xex. 解析:①中,f′(x)=cos x-sin x,f″(x)=-sin x-cos x=-sin<0在区间上恒成立;②中,f′(x)=-2(x>0),f″(x)=-<0在区间上恒成立;③中,f′(x)

11、=-3x2+2,f″(x)=-6x在区间上恒小于0.故①②③为凸函数.④中,f′(x)=ex+xex,f″(x)=2ex+xex=ex(x+2)>0在区间上恒成立,故④中函数不是凸函数. 答案:①②③ 5.已知函数f(x)=x3+x-16. (1)求曲线y=f(x)在点(2,-6)处的切线的方程; (2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标; (3)假如曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程. 解:(1)可判定点(2,-6)在曲线y=f(x)上. ∵f′(x)=(x3+x-16)′=3x2+1. ∴f′(x)在点

12、2,-6)处的切线的斜率为k=f′(2)=13. ∴切线的方程为y=13(x-2)+(-6), 即y=13x-32. (2)设切点为(x0,y0), 则直线l的斜率为f′(x0)=3x+1, ∴直线l的方程为 y=(3x+1)(x-x0)+x+x0-16, 又∵直线l过点(0,0), ∴0=(3x+1)(-x0)+x+x0-16, 整理得,x=-8,∴x0=-2, ∴y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13. ∴直线l的方程为y=13x,切点坐标为(-2,-26). (3)∵切线与直线y=-x+3垂直, ∴切线的斜率k=4. 设切

13、点的坐标为(x0,y0), 则f′(x0)=3x+1=4,∴x0=±1. ∴或 切线方程为y=4(x-1)-14或y=4(x+1)-18. 即y=4x-18或y=4x-14. 6.(选做题)已知函数f(x)=x-,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值.并推断两条切线是否为同一条直线. 解:依据题意有: 曲线y=f(x)在x=1处的切线斜率为f′(1)=3, 曲线y=g(x)在x=1处的切线斜率为g′(1)=-A. 所以f′(1)=g′(1),即a=-3. 曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1), 得y+1=3(x-1),即切线方程为3x-y-4=0. 曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1), 得y+6=3(x-1),即切线方程为3x-y-9=0, 所以两条切线不是同一条直线.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服