ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:295.33KB ,
资源ID:3811748      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3811748.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(宁夏银川市第九中学2022届高三上学期第一次月考试题-数学(理)-Word版含答案.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

宁夏银川市第九中学2022届高三上学期第一次月考试题-数学(理)-Word版含答案.docx

1、银川九中2022届高三第一次月考数学试卷(理)一、选择题(本大题共12小题,每小题5分,共60分)1设集合Mx|x0,xR,Nx|x20”是“0”成立的()A充分不必要条件 B必要不充分条件C既不充分也不必要条件 D充要条件6函数f(x)62x的零点确定位于区间()A(3,4) B(2,3) C(1,2) D(5,6)7已知f(x)则f(2 016)等于()A1 B0 C1 D28若命题“x0R,使得xmx02m30且a1,若“aM”是“函数f(x)loga|x1|在(0,1)上单调递增”的一个充分不必要条件,则区间M可以是()A(1,) B(1,2) C(0,1) D(0,)12已知函数f(

2、x)满足:定义域为R;对任意xR,有f(x2)2f(x);当x1,1时,f(x).若函数g(x)则函数yf(x)g(x)在区间5,5上零点的个数是()A7 B8 C9 D10二、填空题(本大题共4小题,每小题5分,共20分)13已知f(2x1)3x2,且f(a)4,则a的值是_14若loga(a21)loga2a0,则实数a的取值范围是_15由命题“存在xR,使x22xm0”是假命题,求得m的取值范围是(a,),则实数a的值是_16已知偶函数yf(x)满足条件f(x1)f(x1),且当x1,0时,f(x)3x,则f(log5)的值等于_三、解答题(本大题共6小题,共70分)17(本小题满分12

3、分)函数f(x)对一切实数x,y均有f(xy)f(y)(x2y1)x成立,且f(1)0.(1)求f(0)的值; (2)求f(x)的解析式18(本小题满分12分)设关于x的不等式x(xa1)0(aR)的解集为M,不等式x22x30的解集为N.(1)当a1时,求集合M;(2)若MN,求实数a的取值范围19(本小题满分12分) 已知函数f(x)(1)写出f(x)的单调区间;(2)若f(x)16,求相应x的值20(本小题满分12分) 已知p:指数函数f(x)(2a6)x在R上是单调减函数;q:关于x的方程x23ax2a210的两根均大于3,若p或q为真,p且q为假,求实数a的取值范围21(本题满分12

4、分) 已知函数f(x)lnx, g(x)(xa)2(lnxa)2.(1)求函数f(x)在A(1,0)处的切线方程;(2)若g(x)在1,)上单调递增,求实数a的取值范围;(3)证明:g(x).(选考题)请考生在第22、23、24题中任选一题做答,假如多做,则按所做的第一题记分。做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑。(22)(本小题满分10分)【选修4-1:几何证明选讲】 已知BC为圆O的直径,点A为圆周上一点,AD BC于点D,过点A作圆O的切线交BC的延长线于点P,过点B作BE垂直PA的延长线于点E求证: (I ) ; ()AD=AE.(23)(本小题满分10分)【选修4-4

5、:坐标系与参数方程】 已知曲线C的极坐标方程为: ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线经过点P(-1,1)且倾斜角为 (I)写出直线的参数方程和曲线C的一般方程; ()设直线与曲线C相交于A,B两点,求 的值(24)(本小题满分10分)【选修4-5:不等式选讲】 已知函数 (I)解关于x的不等式 ;() ,试比较 与ab+4的大小数学理科答案一、 选择题 14 BCDB 58 ABDA 912 CADD二、填空题 (13) 5 (14) (,1) (15) 1 (16) 1三、解答题17题:解(1)由已知f(xy)f(y)(x2y1)x.令x1,y0,得f(1)f(0)2

6、.又f(1)0,f(0)2.(2)令y0,得f(x)f(0)(x1)x.f(x)x2x2.18题:解析(1)当a1时,由已知得x(x2)0,解得0x2.所以Mx|0x2(2)由已知得Nx|1x3当a1时,由于a10,所以Mx|a1x0由于MN,所以1a10,所以2a1时,由于a10,所以Mx|0xa1由于MN,所以0a13,所以1a2.综上所述,a的取值范围是2,2 19题:解析(1)当x0时,f(x)在(0,2上单调递减,在(2,)上单调递增综上,f(x)的单调增区间为(2,0),(2,);单调减区间为(,2,(0,2(2)当x0时,f(x)16,即(x2)216,解得x6.故所求x的值为6

7、或6.20题:解析p真,则指数函数f(x)(2a6)x的底数2a6满足02a61,所以3a0,a2;对称轴x3;g(3)0,即329a2a212a29a100,所以(a2)(2a5)0.所以a.由得a.p真q假,由3a,得a3或a.综上所述,实数a的取值范围为(,3,)21题:解析(1)由于f(x),所以f(1)1.故切线方程为yx1.(2)g(x)2(xa),令F(x)xa,则yF(x)在1,)上单调递增F(x),则当x1时,x2lnxa10恒成立,即当x1时,ax2lnx1恒成立令G(x)x2lnx1,则当x1时,G(x)0,故G(x)x2lnx1在1,)上单调递减从而G(x)maxG(1)2.故aG(x)max2.(3)证明:g(x)(xa)2(lnxa)22a22(xlnx)ax2ln2x,令h(a)2a22(xlnx)ax2ln2x,则h(a).令Q(x)xlnx,则Q(x)1,明显Q(x)在(0,1)上单调递减,在(1,)上单调递增,则Q(x)minQ(1)1.则g(x)h(a).

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服