ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:95.77KB ,
资源ID:3811599      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3811599.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-6-.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-6-.docx

1、第六节双曲线时间:45分钟分值:100分 一、选择题1(2022新课标全国卷)已知双曲线1(a0)的离心率为2,则a()A2 B.C. D1解析由已知得2,且a0,解得a1,故选D.答案D2(2022广东卷)若实数k满足0k9,则曲线1与曲线1的()A焦距相等 B实半轴长相等C虚半轴长相等 D离心率相等解析由于0k0)的一个焦点,则点F到C的一条渐近线的距离为()A. B3C.m D3m解析由题意,可得双曲线C为1,则双曲线的半焦距c.不妨取右焦点(,0),其渐近线方程为yx,即xy0.所以由点到直线的距离公式得d.故选A.答案A5(2022江西卷)过双曲线C:1的右顶点作x轴的垂线,与C的一

2、条渐近线相交于点A,若以C的右焦点为圆心,半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为()A.1 B.1C.1 D.1解析设双曲线的右顶点为B,则B(a,0)不妨取渐近线yx,则A点的坐标为(a,b),从而可知|OA|c.由已知可得|OF|AF|c4,OAF为边长是c的等边三角形又ABOF,|OB|a2,|AB|b2.故所求的双曲线方程为1.答案A6双曲线1(a0,b0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一象限内且在l1上,若l2PF1,l2PF2,则该双曲线的离心率为()A. B2C. D.解析由题意可知F1(c,0),F2(c,0),P(x0,

3、y0),渐近线l1的直线方程为yx,渐近线l2的直线方程为yx.l2PF2,即ay0bcbx0.点P在l1上,即ay0bx0,bx0bcbx0,解得x0.P.l2PF1,1,即3a2b2.a2b2c2,4a2c2,即c2a.答案B二、填空题7双曲线1的两条渐近线的方程为_解析本题考查双曲线的渐近线方程由a216,b29,得渐近线方程为yxx.答案yx8双曲线1的离心率为,则m等于_解析a216,b2m,得c216m,则e,m9.答案99设双曲线C:1(a0,b0)的右焦点为F,O为坐标原点若以F为圆心,FO为半径的圆与双曲线C的渐近线yx交于点A(不同于O点),则OAF的面积为_解析由于右焦点

4、F(c,0)到渐近线yx,即bxay0的距离为b,所以|OA|2a,故OAF的面积为2abab.答案ab三、解答题10直线l:y(x2)和双曲线C:1(a0,b0)交于A,B两点,且|AB|,又l关于直线l1:yx对称的直线l2与x轴平行(1)求双曲线C的离心率;(2)求双曲线C的方程解(1)设双曲线C:1过一、三象限的渐近线l1:0的倾斜角为.由于l和l2关于l1对称,记它们的交点为P.而l2与x轴平行,记l2与y轴的交点为Q.依题意有QPOPOMOPM.又l:y(x2)的倾斜角为60,则260,30.所以tan30.于是e211.所以e.(2)由,可设双曲线方程为1,即x23y23k2.将

5、y(x2)代入x23y23k2,得x233(x2)23k2.化简得8x236x363k20,则x1x2,x1x2.设A(x1,y1),B(x2,y2),则|AB| |x1x2|22 ,解得k21.故所求双曲线C的方程为y21.11(2021湛江模拟)已知双曲线1(a0,b0)的右焦点为F(c,0)(1)若双曲线的一条渐近线方程为yx且c2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为,求双曲线的离心率解(1)双曲线的渐近线为yx,ab.c2a2b22a24,a2b22.双曲线方程为1.(2)设点A的坐标为(x0,y0),直线AO的

6、斜率满足()1,x0y0,依题意,圆的方程为x2y2c2,将代入圆的方程得3yyc2,即y0c.x0c,点A的坐标为.代入双曲线方程得1,即b2c2a2c2a2b2.又a2b2c2,将b2c2a2代入式,整理得c42a2c2a40.348240,(3e22)(e22)0.e1,e,双曲线的离心率为. 1在平面直角坐标系xOy中,已知ABC的顶点A(5,0)和C(5,0),顶点B在双曲线1上,则为()A. B.C. D.解析设ABC中角A,B,C所对的边分别是a,b,c,由正弦定理得,由双曲线的标准方程和定义可知,A,C是双曲线的焦点,且b10,|ca|8.所以.故选C.答案C2已知双曲线C:1

7、(a0,b0)的离心率为2,A,B为其左,右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若PA,PB,PO的斜率为k1,k2,k3,则mk1k2k3的取值范围为()A(0,3) B(0,)C. D(0,8)解析e2,ba,设P(x,y),则1,k1k23,又双曲线的渐近线为yx,所以0k3,故0m0,b0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围是()A(1,2) B(,2)C(,2) D(2,3)解析由题意知,ABE为等腰三角形若ABE是锐角三角形,则只需要AEB为锐角依据对称性,只要

8、AEF即可直线AB的方程为xc,代入双曲线方程得y2,取点A,则|AF|,|EF|ac,只要|AF|EF|就能使AEF,即ac,即b2a2ac,即c2ac2a20,即e2e20,即1e1,故1e0,b0)的两条渐近线分别为l1:y2x,l2:y2x.(1)求双曲线E的离心率(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且OAB的面积恒为8.摸索究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由解(1)由于双曲线E的渐近线分别为y2x,y2x,所以2,所以2,故ca,从而双曲线E的离心率e.(2)由

9、(1)知,双曲线E的方程为1.设直线l与x轴相交于点C.当lx轴时,若直线l与双曲线E有且只有一个公共点,则|OC|a,|AB|4a.又由于OAB的面积为8,所以|OC|AB|8,因此a4a8,解得a2,此时双曲线E的方程为1.若存在满足条件的双曲线E,则E的方程只能为1.以下证明:当直线l不与x轴垂直时,双曲线E:1也满足条件设直线l的方程为ykxm,依题意,得k2或k2,则C.记A(x1,y1),B(x2,y2)由得y1,同理,得y2.由SOAB|OC|y1y2|,得8,即m24|4k2|4(k24)由得(4k2)x22kmxm2160.由于4k20,所以4k2m24(4k2)(m216)16(4k2m216)又由于m24(k24),所以0,即l与双曲线E有且只有一个公共点因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服