ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:179.86KB ,
资源ID:3809960      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3809960.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2013-2020高中数学苏教版(选修1-1)检测题-同步练测-2.3双曲线.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2013-2020高中数学苏教版(选修1-1)检测题-同步练测-2.3双曲线.docx

1、 2.3双曲线(苏教版选修1-1) 建议用时 实际用时 满分 实际得分 45分钟 100分 一、填空题(本题共11小题,每小题5分,共55分) 1.已知方程的图象是双曲线,那么的取值范围是. 2.与双曲线有共同的焦点,且过点(4, )的双曲线的标准方程为. 3.已知双曲线的离心率为,则双曲线的渐近线方程为. 4.若m是2和8的等比中项,则圆锥曲线的离心率是. 5.若直线过点,与双曲线只有一个公共点,则这样的直线有条. 6.设双曲线的半焦距为,直线过两点.已知原点到直线的距离为,则双曲线的离心率为. 7.已知双曲线=1(a>0,b>0),过其右焦点且

2、垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点,若OM⊥ON,则双曲线的离心率为. 8.过原点的直线,假如它与双曲线相交,则直线的斜率的取值范围是. 9.已知双曲线中心在原点且一个焦点为,直线与其交于两点,中点的横坐标为,则此双曲线的方程是. 10.过双曲线的左焦点且垂直于轴的直线与双曲线相交于两点,以为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于. 11.已知过双曲线右焦点且倾斜角为的直线与双曲线右支有两个交点,则双曲线的离心率的取值范围是________. 二、解答题(本题共3小题,共45分) 12.(本小题满分14分)求适合下列条件的双曲线的标准方程: (1)焦

3、点在轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 13.(本小题满分15分)直线与双曲线的右支交于不同的两点,求实数的取值范围. 14.(本小题满分16分)已知双曲线的离心率,原点到过的直线的距离是 (1)求双曲线的方程. (2)已知直线交双曲线于不同的两点,且

4、都在以为圆心的圆上,求出的值. 2.3 双曲线答题纸(苏教版选修1-1) 得分:_________ 一、填空题 1. 2. 3. 4. 5. 6.7. 8. 9. 10. 11. 二、解答题 12. 13. 14. 2.3 双曲线参考答案(苏教版选修1-1) 1.解析:由方程的图象是双曲线

5、知,,即 2.解析:可设与已知双曲线有共同焦点的双曲线的方程为=1(-9<k<16),再将已知点(4, 3 )代入上面的方程可得到 -=1,解得k=12或k=-84(舍去). 3.解析:∵e== ,,∴.∵渐近线方程为y=± x,∴y=± x. 4.或解析:由题意,=2×8=16,∴m=±4.当m=4时,=1表示椭圆,e== ;当m=-4时,=1表示双曲线,e==. 5.3 解析:双曲线方程化为标准方程为,则点(3,0)为双曲线的右顶点.过点(3,0)与x轴垂直的直线满足题意,过点(3,0)与双曲线渐近线平行的2条直线满足题意,因此这样的直线共有3条. 6.2解析:由已知,直线的方

6、程为.原点到直线的距离为,则有. 又,所以,两边平方,得.两边同除以,并整理,得,所以或.而,得>2,所以.故. 7.解析:MN为双曲线的通径,其长度为 ,又由于OM⊥ON且OM=ON,∴在等腰Rt△MON中,有=c,∴=ac,∴=ac,∴=0,∴e=(负值舍去). 8.解析:双曲线的渐近线方程为若直线l与双曲线相交,则 9.解析:设双曲线方程为.将代入, 整理得.由根与系数的关系得,则. 又,解得,,所以双曲线的方程是 10.2解析:设双曲线的左焦点为右顶点为又由于MN为圆的直径且点A在圆上,所以F为圆的圆心,且所以,即又 11.解析:过双曲线的右焦点与双曲线的渐近线平行的直

7、线与双曲线右支仅有一个交点,故由题意结合图形分析可得,故<2,从而双曲线的离心率的取值范围是. 12.解:(1)焦点在轴上,设所求双曲线的方程为. 由题意,得 解得,.所以焦点在轴上的双曲线的方程为. (2)方法一:当焦点在轴上时,设所求双曲线的方程为 由题意,得解得 所以焦点在轴上的双曲线的方程为. 同理可求得焦点在轴上的双曲线的方程为. 方法二:设以为渐近线的双曲线的方程为 当>时,,解得.此时,所求的双曲线的方程为. 当<时,,解得.此时,所求的双曲线的方程为. 13.解:将直线的方程代入双曲线的方程后, 整理得. 依题意,直线与双曲线的右支交于不同两点,故 解得的取值范围是. 14.解:(1)由于原点到直线:的距离 所以 故所求双曲线方程为 (2)把代入中,消去,整理得. 设的中点是,则 所以即.又,所以,即.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服