ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:37.93KB ,
资源ID:3809928      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3809928.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(【2021高考复习参考】高三数学(理)配套黄金练习:1.3.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【2021高考复习参考】高三数学(理)配套黄金练习:1.3.docx

1、 第一章 1.3 第3课时 高考数学(理)黄金配套练习 一、选择题 1.下列全称命题中假命题的个数(  ) ①2x+1是整数(x∈R); ②对全部的x∈R,x>3; ③对任意一个x∈Z,2x2+1为奇数; ④任何直线都有斜率. A.1     B.2 C.3 D.4 答案 C 解析 ①②④是假命题. 2.下列命题的否定是真命题的是(  ) A.有些实数的确定值是正数 B.全部平行四边形都不是菱形 C.任意两个等边三角形都是相像的 D.3是方程x2-9=0的一个根 答案 B 3.下列命题中正确的是(  ) A.对全部正实数t,有

2、 B.不存在实数x,使x<4,且x2+5x-24=0 C.存在实数x,使|x+1|≤1且x2>0 D.不存在实数x,使x3+x+1=0 答案 C 解析 选项A不正确,如t=时,有>t;选项B不正确,如x=3<4,而x2+5x-24=0;选项D不正确,设f(x)=x3+x+1,f(-1)=-1<0,f(0)=1>0,故方程x3+x+1=0在(-1,0)上至少有一个实数根.对于C,x=-1时即满足条件,故选C. 4.已知命题p:∀x∈R,x2+x-6<0,则命题綈p是(  ) A.∀x∈R,x2+x-6≥0 B.∃x∈R,x2+x-6≥0 C.∀x∈R,x2+x-6>0 D.∃x

3、∈R,x2+x-6<0 答案 B 解析 全称命题的否定为特称命题,选B. 5.已知a>0,函数f(x)=ax2+bx+c.若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  ) A.∃x∈R,f(x)≤f(x0) B.∃x∈R,f(x)≥f(x0) C.∀x∈R,f(x)≤f(x0) D.∀x∈R,f(x)≥f(x0) 答案 C 解析 由题知:x0=-为函数f(x)图象的对称轴方程,所以f(x0)为函数的最小值,即对全部的实数x,都有f(x)≥f(x0),因此∀x∈R,f(x)≤f(x0)是错误的,选C. 6.已知命题p:∃x∈

4、R,mx2+1≤0,命题q:∀x∈R,x2+mx+1>0.若p∨q为假命题,则实数m的取值范围为(  ) A.m≥2 B.m≤-2 C.m≤-2或m≥2 D.-2≤m≤2 答案 A 解析 若p∨q为假命题,则p、q均为假命题,则綈p:∀x∈R,mx2+1>0与綈q:∃x∈R, x2+mx+1≤0均为真命题.依据綈p:∀x∈R,mx2+1>0为真命题可得m≥0,依据綈q:∃x∈R,x2+mx+1≤0为真命题可得Δ=m2-4≥0,解得m≥2或m≤-2.综上,m≥2. 二、填空题 7.命题“存在实数x0,y0,使得x0+y0>1”,用符号表示为_

5、此命题的否定是________(用符号表示),是________(填“真”或“假”)命题. 答案 ∃x0,y0∈R,x0+y0>1;∀x,y∈R,x+y≤1;假 8.命题“存在x∈R,使得x2+2x+5=0”的否定是________. 答案 对任何x∈R,都有x2+2x+5≠0 9若命题“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是________. 答案 -2≤a≤2 解析 由于“∃x∈R,2x2-3ax+9<0”为假命题,则“∀x∈R,2x2-3ax+9≥0”为真命题.因此Δ=9a2-4×2×9≤0,故-2≤a≤2. 10.已知命题p1:函

6、数y=2x-2-x在R为增函数,p2:函数y=2x+2-x在R为减函数. 则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2和q4:p1∧(綈p2)中,真命题是________. 答案 q1,q4 解析 p1是真命题,则綈p1为假命题;p2是假命题,则綈p2为真命题; ∴q1:p1∨p2是真命题,q2:p1∧p2是假命题, ∴q3:(綈p1)∨p2为假命题,q4:p1∧(綈p2)为真命题. ∴真命题是q1,q4. 11.已知:p:>0,则綈p对应的x的集合为______________. 答案 {x|-1≤x≤2} 解析 p:>0⇔x>2或x<-1 ∴綈p:

7、-1≤x≤2 12.设命题p:若a>b,则<;命题q:<0⇔ab <0.给出下面四个复合命题:①p∨q;②p∧q;③(綈p)∧(綈q);④(綈p)∨(綈q).其中真命题的个数有________个. 答案 2个 解析 p假,q真,故①④真 三、解答题 13.已知p:∀x∈R,2x>m(x2+1),q:∃x0∈R,x+2x0-m-1=0,且p∧q为真,求实数m的取值范围. 答案 -2≤m≤-1 解析 2x>m(x2+1)可化为mx2-2x+m<0. 若p:∀x∈R,2x>m(x2+1)为真, 则mx2-2x+m<0对任意的x∈R恒成立. 当m=0时,不等式可化为-2x<0,明显

8、不恒成立; 当m≠0时,有∴m<-1. 若q:∃x0∈R,x+2x0-m-1=0为真, 则方程x2+2x-m-1=0有实根, ∴4+4(m+1)≥0,∴m≥-2. 又p∧q为真,故p、q均为真命题. ∴∴-2≤m<-1. 14.已知命题p:|x2-x|≥6; q:x∈Z,若“p∧q”与“綈q”同时为假命题,求x的值. 答案 -1,0,1,2 解析 ∵“p且q”为假, ∴p、q中至少有一个命题为假命题; 又“綈q”为假,∴q为真,从而知p为假命题 故有即得 ∴x的值为:-1,0,1,2 15.设命题p:函数f(x)=lg(ax2-x+a)的定义域为R;命题q:不等式3

9、x-9x<a对一切正实数均成立.假如命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围. 答案 0≤a≤1 解析 若命题p为真,即ax2-x+a>0恒成立, 则有,∴a>1. 令y=3x-9x=-(3x-)2+,由x>0得3x>1, ∴y=3x-9x的值域为(-∞,0). ∴若命题q为真,则a≥0. 由命题“p∨q”为真,“p∧q”为假,得命题p、q一真一假. 当p真q假时,a不存在;当p假q真时,0≤a≤1. 拓展练习·自助餐 1.下列命题中正确的是(  ) A.若p∨q为真命题,则p∧q为真命题 B.“x=5”是“x2-4x-5=0”的充分不必要

10、条件 C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0” D.已知命题p:∃x∈R,x2+x-1<0,则綈p:∃x∈R,x2+x-1≥0 答案 B 解析 若p∨q为真命题,则p、q有可能一真一假,此时p∧q为假命题,故A错;易知由“x=5”可以得到“x2-4x-5=0”,但反之不成立,故B正确;选项C错在把命题的否定写成了否命题;特称命题的否定是全称命题,故D错. 2.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“綈p”形式的命题是(  ) A.存在实数m,使方程x2+mx+1=0无实根 B.不存在实数m,使方程x2+mx+1=

11、0无实根 C.对任意的实数m,方程x2+mx+1=0无实根 D.至多有一个实数m,使方程x2+mx+1=0有实根 答案 C 解析  特称命题的否定是全称命题. 3.命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________. 答案 存在x∈R,使得|x-2|+|x-4|≤3 解析 由定义知命题的否定为“存在x∈R,使得|x-2|+|x-4|≤3” 4.已知命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,命题q:函数y=(2a-1)x为减函数,若“p且q”为真命题,则实数a的取值范围是(  ) A.a≤ B.0

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服