1、双基限时练(四)一、选择题1在等差数列an中,a1a910,则a5的值为()A5 B6C8 D10解析由等差中项的性质,知2a5a1a9,a55.答案A2已知an为等差数列,a1a3a5105,a2a4a699,则a20等于()A1 B1C3 D7解析由a1a3a53a3105,得a335.又(a2a4a6)(a1a3a5)3d6,得d2,a20a317d35341.答案B3an是首项a11,公差d3的等差数列,若an2022,则序号n的值为()A670 B672C674 D668解析由题意得ana1(n1)d1(n1)33n2,由3n22022,n672.答案B4在等差数列an中,a1030
2、,a2050,则a40等于()A40 B70C80 D90解析a10,a20,a30,a40成等差数列,公差为20,a40a1032090.答案D5在等差数列an中,a12a8a1596,则2a9a10()A24 B22C20 D8解析由a12a8a15964a8,a824.故2a9a102(a8d)(a82d)a824.答案A6已知数列an为等差数列,且a1a7a134,则tan(a2a12)的值为()A. BC D解析an为等差数列,a1a7a133a74.a7,tan(a2a12)tan2a7tantan.答案D二、填空题7在等差数列an中,d0,a2a5a89,a3a5a721,则an
3、_.解析由a2a5a89,知a53.由a3a5a721,知(32d)(32d)7.得d2,又d0,d2.an2n7.答案2n78在等差数列an中,a24,a68,则a20_.解析an为等差数列,a2,a4,a6,a8,a20为等差数列,设其公差为d,则a6a22d42d得d2,a20a29d49222.答案229在等差数列an中,(1)若a3a4a5a6a7350,则a2a8_;(2)若a2a3a4a534,a2a552,且a4a2,则an_.解析(1)由已知得a570,又a2a82a5140.(2)由已知得又a4a2,d3,ana2(n2)d193n.答案(1)140(2)193n三、解答题
4、10已知,成等差数列,求证,也成等差数列证明,成等差数列,.化简得.,成等差数列11已知等差数列an的前三项依次为x1,x1,2x3,求这个数列的通项公式解这个数列的前三项依次为x1,x1,2x3,2(x1)x12x3,得x0.该数列的首项为1,公差d1(1)2,其通项公式ana1(n1)d12(n1)2n3.12已知方程(x22xm)(x22xn)0的4个根组成一个首项为的等差数列,求|mn|.解设a1,a2d,a32d,a43d.而方程x22xm0中两根之和为2,方程x22xn0中两根之和也为2.a1a2a3a416d4.d.a1,a4是一个方程的两个根,a2,a3是另一个方程的两个根,为
5、m或n,|mn|.思 维 探 究13数列an满足a11,an1(n2n)an,是常数(1)当a21时,求及a3的值;(2)数列an是否可能为等差数列?若可能,求出它的通项公式;若不行能,说明理由解(1)由于an1(n2n)an,且a11.所以当a21时,有12,故3.从而a3(2223)(1)3.(2)数列an不行能为等差数列,证明如下:由a11,an1(n2n)an,得a22,a3(6)(2),a4(12)(6)(2)若存在,使an为等差数列,则a3a2a2a1,即(5)(2)1,解得3.故a2a112,a4a3(11)(6)(2)24.这与an为等差数列冲突所以,对任意,an都不行能是等差数列