ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:54.37KB ,
资源ID:3804302      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3804302.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【2022届走向高考】高三数学一轮(北师大版)基础巩固:第12章-第5节-数学归纳法(理).docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【2022届走向高考】高三数学一轮(北师大版)基础巩固:第12章-第5节-数学归纳法(理).docx

1、第十二章第五节一、选择题1若f(n)1(nN),则f(1)为()A1BC1D非以上答案答案C解析等式右边的分母是从1开头的连续的自然数,且最大分母为6n1,则当n1时,最大分母为5,故选C2用数学归纳法证明不等式1(nN)成立,其初始值至少应取()A7B8C9D10答案B解析由Sn得n7,又nN,所以n8.3记凸k边形的内角和为f(k),则凸k1边形的内角和f(k1)f(k)_()ABCD2答案B解析由凸k边形变为凸k1边形时,增加了一个三角形,故f(k1)f(k).4用数学归纳法证明“12222n12n1(nN*)”的过程中,其次步nk时等式成立,则当nk1时应得到()A12222k22k1

2、2k11B12222k2k12k12k1C12222k12k12k11D12222k12k2k11答案D解析由条件知,左边是从20,21始终到2n1都是连续的,因此当nk1时,左边应为12222k12k,而右边应为2k11.5对于不等式n1(nN),某人的证明过程如下:1当n1时,11,不等式成立. 2假设nk(kN)时不等式成立,即k1,则nk1时,(k1)1.当nk1时,不等式成立. 上述证法()A过程全都正确Bn1验得不正确C归纳假设不正确D从nk到nk1的推理不正确答案D解析本题的证明中,从nk到nk1的推理没有用到归纳假设,所以本题不是用数学归纳法证题6下列代数式(其中kN)能被9整

3、除的是()A667kB27k1C2(27k1)D3(27k)答案D解析(1)当k1时,明显只有3(27k)能被9整除(2)假设当kn(nN)时,命题成立,即3(27n)能被9整除,那么3(27n1)21(27n)36.这就是说,kn1时命题也成立由(1)(2)可知,命题对任何kN都成立二、填空题7(2022陕西高考)已知f(x),x0,若f1(x)f(x),fn1(x)f(fn(x),nN, 则f2022(x)的表达式为_答案解析考查归纳推理f1(x)f(x),f2(x)f(f1(x),f3(x)f(f2(x),f2022(x).8用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”,当其

4、次步假设n2k1(kN)命题为真时,进而需证n_时,命题亦真答案2k1解析n为正奇数,假设n2k1成立后,需证明的应为n2k1时成立9用数学归纳法证明(n1)(n2)(nn)2n13(2n1)(nN)时,从k到k1,左边需要增加的代数式为_答案2(2k1)解析当nk时左边的最终一项是2k,nk1时左边的最终一项是2k2,而左边各项都是连续的,所以nk1时比nk时左边少了(k1),而多了(2k1)(2k2)因此增加的代数式是2(2k1)三、解答题10(2022广东高考)设数列an的前n项和为Sn,满足Sn2nan13n24n,nN*,且S315.(1)求a1,a2,a3的值;(2)求数列an的通

5、项公式解析(1)a1S12a2312412a27a1a2S24a3322424(S3a1a2)204(15a1a2)20,a1a28联立解得,a3S3a1a21587,综上a13,a25,a37.(2)由(1)猜想an2n1,以下用数学归纳法证明:由(1)知,当n1时,a13211,猜想成立;假设当nk时,猜想成立,即ak2k1,Sk3k2k22k,又Sk2kak13k24k,2kak13k24kk22k,ak12k3,即nk1时,有ak12(k1)1成立由数学归纳法原理知,an2n1成立.一、选择题1用数学归纳法证明123n2,则当nk1时左端应在nk的基础上加上()Ak21B(k1)2CD

6、(k21)(k22)(k23)(k1)2答案D解析当nk时,左侧123k2,当nk1时,左侧123k2(k21)(k1)2,当nk1时,左端应在nk的基础上加上(k21)(k22)(k23)(k1)2.2在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,其次件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形,第三件首饰由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,依据这种规律增加确定数量的珠宝,使它构成更大的正六边形,依此推断前10件首饰所用珠宝总颗数

7、为()A190 B715C725 D385答案B解析由条件可知前5件首饰的珠宝数依次为:1,15,159,15913,1591317,即每件首饰的珠宝数为一个以1为首项,4为公差的等差数列的前n项和,通项an4n3.由此可归纳出第n件首饰的珠宝数为2n2n.则前n件首饰所用的珠宝总数为2(1222n2)(12n).当n10时,总数为715.二、填空题3若f(n)122232(2n)2,则f(k1)与f(k)的递推关系式是_答案f(k1)f(k)(2k1)2(2k2)2解析f(k)1222(2k)2,f(k1)1222(2k)2(2k1)2(2k2)2;f(k1)f(k)(2k1)2(2k2)2

8、.4利用数学归纳法证明不等式1f(n)(n2,nN)的过程,由nk到nk1时,左边增加了_项答案2k解析当nk时为1,当nk1时为1,所以从nk到nk1增加了2k项三、解答题5设f(x),x11,xnf(xn1)(n2,nN)(1)求x2,x3,x4的值;(2)归纳并猜想xn的通项公式;(3)用数学归纳法证明你的猜想解析(1)x2f(x1),x3f(x2),x4f(x3).(2)依据计算结果,可以归纳猜想出xn.(3)证明:当n1时,x11,与已知相符,归纳出的公式成立假设当nk(kN)时,公式成立,即xk,那么,当nk1时,有xk1,所以,当nk1时公式也成立由知,对任意nN,有xn成立6是

9、否存在常数a、b、c使等式122232n2(n1)22212an(bn2c)对于一切nN都成立,若存在,求出a、b、c并证明;若不存在,试说明理由解析假设存在a、b、c使122232n2(n1)22212an(bn2c)对于一切nN都成立当n1时,a(bc)1;当n2时,2a(4bc)6;当n3时,3a(9bc)19.解方程组解得证明如下:当n1时,由以上知存在常数a,b,c使等式成立假设nk(kN)时等式成立,即122232k2(k1)22212k(2k21);当nk1时,122232k2(k1)2k2(k1)22212k(2k21)(k1)2k2k(2k23k1)(k1)2k(2k1)(k1)(k1)2(k1)(2k24k3)(k1)2(k1)21即nk1时,等式成立因此存在a,b2,c1使等式对一切nN都成立

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服