ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:603.18KB ,
资源ID:3803619      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3803619.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021年高考数学(四川专用-理)一轮复习考点突破:第3篇-第6讲-正弦定理和余弦定理.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021年高考数学(四川专用-理)一轮复习考点突破:第3篇-第6讲-正弦定理和余弦定理.docx

1、第6讲正弦定理和余弦定理最新考纲把握正弦定理、余弦定理,并能解决一些简洁的三角形度量问题知 识 梳 理1正弦定理和余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,则正弦定理余弦定理内容2R(R为ABC外接圆半径)a2b2c22bccos A b2a2c22accos B c2a2b22abcos C常见变形(1)a2Rsin A,b2Rsin B,c2Rsin C;(2)sin A,sin B,sin C;(3)abcsin Asin Bsin Ccos A;cos B;cos C解决的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角

2、(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角2.在ABC中,已知a,b和A时,解的状况A为锐角A为钝角或直角图形关系式absin Absin Aababab解的个数一解两解一解一解3.三角形中常用的面积公式(1)Sah(h表示边a上的高)(2)Sbcsin Aabsin Cacsin B.(3)Sr(abc)(r为ABC内切圆半径)辨 析 感 悟1三角形中关系的推断(1)在ABC中,sin Asin B的充分不必要条件是AB. ()(2)(教材练习改编)在ABC中,a,b,B45,则A60或120.()2解三角形(3)在ABC中,a3,b5,sin A,则sin B

3、.()(4)(教材习题改编)在ABC中,a5,c4,cos A,则b6.()3三角形外形的推断(5)在ABC中,若sin Asin Bcos Acos B,则此三角形是钝角三角形()(6)在ABC中,若b2c2a2,则此三角形是锐角三角形()感悟提升1一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在ABC中,ABabsin Asin B,如(1)2推断三角形外形的两种途径一是化边为角;二是化角为边,并常用正弦(余弦)定理实施边、角转换.同学用书第63页考点一利用正弦、余弦定理解三角形【例1】 (1)(2021湖南卷)在锐角ABC中,角A,B所对的边长分

4、别为a,b.若2asin Bb,则角A等于 ()A. B. C. D.(2)(2022杭州模拟)在ABC中,角A,B,C所对的边分别为a,b,c,若a1,c4,B45,则sin C_.解析(1)在ABC中,由正弦定理及已知得2sin Asin Bsin B,B为ABC的内角,sin B0.sin A.又ABC为锐角三角形,A,A.(2)由余弦定理,得b2a2c22accos B132825,即b5.所以sin C.答案(1)A(2)规律方法 已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常依据三角函数值的有界性和大边对大角定理进行推断【训练1】

5、(1)在ABC中,a2,c2,A60,则C()A30 B45 C45或135 D60(2)在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2bc,sin C2sin B,则A()A30 B60 C120 D150解析(1)由正弦定理,得,解得:sin C,又ca,所以C60,所以C45.(2)sin C2sin B,由正弦定理,得c2b,cos A,又A为三角形的内角,A30.答案(1)B(2)A考点二推断三角形的外形【例2】 (2022临沂一模)在ABC中,a,b,c分别为内角A,B,C的对边,且2asin A(2bc)sin B(2cb)sin C.(1)求角A的大小;(2)若s

6、in Bsin C,试推断ABC的外形解(1)由2asin A(2bc)sin B(2cb)sin C,得2a2(2bc)b(2cb)c,即bcb2c2a2,cos A,A60.(2)ABC180,BC18060120.由sin Bsin C,得sin Bsin(120B),sin Bsin 120cos Bcos 120sin B.sin Bcos B,即sin(B30)1.0B120,30B30150.B3090,B60.ABC60,ABC为等边三角形规律方法 解决推断三角形的外形问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的

7、关系式,然后利用常见的化简变形得出三边的关系另外,在变形过程中要留意A,B,C的范围对三角函数值的影响【训练2】 (1)(2021山东省试验中学诊断)在ABC中,内角A,B,C的对边分别为a,b,c,且2c22a22b2ab,则ABC是()A钝角三角形 B直角三角形C锐角三角形 D等边三角形(2)在ABC中,若(a2b2)sin(AB)(a2b2)sin C,则ABC的外形是()A锐角三角形 B直角三角形C等腰三角形 D等腰或直角三角形解析(1)由2c22a22b2ab,得a2b2c2ab,所以cos C0,所以90C180,即ABC为钝角三角形(2)由已知(a2b2)sin(AB)(a2b2

8、)sin C,得b2sin(AB)sin Ca2sin Csin(AB),即b2sin Acos Ba2cos Asin B,即sin2 Bsin Acos Bsin2 Acos Asin B,所以sin 2Bsin 2A,由于A,B是三角形的内角,故02A2,02B2.故只可能2A2B或2A2B,即AB或AB.故ABC为等腰三角形或直角三角形答案(1)A(2)D考点三与三角形面积有关的问题【例3】 (2021新课标全国卷)ABC的内角A,B,C的对边分别为a,b,c,已知abcos Ccsin B.(1)求B;(2)若b2,求ABC面积的最大值审题路线(1)abcos Ccsin Bsin

9、Asin(BC)求出角B.(2)由得出a2与c2的关系式利用基本不等式求ac的最大值即可解(1)由已知及正弦定理,得sin Asin Bcos Csin Csin B又A(BC),故sin Asin(BC)sin Bcos Ccos Bsin C由,和C(0,)得sin Bcos B.又B(0,),所以B.(2)ABC的面积Sacsin Bac.由已知及余弦定理,得4a2c22accos.又a2c22ac,故ac,当且仅当ac时,等号成立因此ABC面积的最大值为1.规律方法 在解决三角形问题中,面积公式Sabsin Cbcsin Aacsin B最常用,由于公式中既有边又有角,简洁和正弦定理、

10、余弦定理联系起来.同学用书第64页【训练3】 (2021湖北卷)在ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A3cos(BC)1.(1)求角A的大小;(2)若ABC的面积S5,b5,求sin Bsin C的值解(1)由cos 2A3cos(BC)1,得2cos2A3cos A20,即(2cos A1)(cos A2)0,解得cos A或cos A2(舍去)由于0A,所以A.(2)由S bcsin Abcbc5,得bc20.又b5,所以c4.由余弦定理,得a2b2c22bccos A25162021,故a.又由正弦定理,得sin Bsin Csin Asin Asin2A.1

11、在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要留意依据这个定理确定角的范围及三角函数值的符号,防止消灭增解或漏解2正、余弦定理在应用时,应留意机敏性,尤其是其变形应用时可相互转化如a2b2c22bccos A可以转化为sin2 Asin2 Bsin2 C2sin Bsin Ccos A,利用这些变形可进行等式的化简与证明答题模板6解三角形问题【典例】 (12分)(2021山东卷)设ABC的内角A,B,C所对的边分别为a,b,c,且ac6,b2,cos B.(1)求a,c的值;(2)求sin(AB)的值规范解答(1)由余弦定理b2a2c22accos B,得b2(ac)22ac(1

12、cos B),又b2,ac6,cos B,所以ac9,解得a3,c3, (6分)(2)在ABC中,sin B, (7分)由正弦定理得sin A. (9分)由于ac,所以A为锐角,所以cos A. (10分)因此sin(AB)sin Acos Bcos Asin B. (12分)反思感悟 (1)在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系题中若消灭边的一次式一般接受到正弦定理,消灭边的二次式一般接受到余弦定理应用正、余弦定理时,留意公式变式的应用解决三角形问题时,留意角的限制范围(2)在本题第(2)问中,不会推断角A为锐角,易造成求错cos A,导致sin(AB)的结果出

13、错答题模板第一步:定已知即梳理已知条件,确定三角形中已知的边与角;其次步:选定理即依据已知的边角关系机敏地选用定理和公式;第三步:代入求值【自主体验】已知a,b,c分别为ABC三个内角A,B,C的对边,casin Cccos A.(1)求A;(2)若a2,ABC的面积为,求b,c.解(1)由casin Cccos A及正弦定理,得sin Asin Ccos Asin Csin C0,由于sin C0,所以sin,又0A,所以A,故A.(2)ABC的面积Sbcsin A,故bc4.而a2b2c22bccos A,故b2c28,解得bc2.基础巩固题组(建议用时:40分钟)一、选择题1(2021绍

14、兴模拟)在ABC中,若a2c2b2ab,则C()A30 B45 C60 D120解析由a2c2b2ab,得cos C,所以C30.答案A2(2022合肥模拟)在ABC中,A60,AB2,且ABC的面积为,则BC的长为()A. B. C2 D2解析SABACsin 602AC,所以AC1,所以BC2AB2AC22ABACcos 603,所以BC.答案B3ABC的内角A,B,C的对边分别为a,b,c,已知b2,B,C,则ABC的面积为()A22 B.1 C22 D.1解析由正弦定理及已知条件得c2,又sin Asin(BC).从而SABCbcsin A221.答案B4ABC的内角A,B,C所对的边

15、分别为a,b,c.若B2A,a1,b,则c()A2 B2 C. D1解析由,得,所以,故cos A,又A(0,),所以A,B,C,c2.答案B5(2021陕西卷)设ABC的内角A,B,C所对的边分别为a,b,c,若bcos Cccos Basin A,则ABC的外形为()A直角三角形 B锐角三角形C钝角三角形 D不确定解析由正弦定理及已知条件可知sin Bcos Ccos Bsin Csin2 A,即sin(BC)sin2 A,而BCA,所以sin(BC)sin A,所以sin2 Asin A,又0A,sin A0,sin A1,即A.答案A二、填空题6在ABC中,角A,B,C所对的边分别为a

16、,b,c,若a,b2,sin Bcos B,则角A的大小为_解析由题意知,sin Bcos B,所以sin,所以B,依据正弦定理可知,可得,所以sin A,又ab,故A.答案7(2022惠州模拟)在ABC中,角A,B,C的对边分别为a,b,c.若(a2c2b2)tan Bac,则角B的值为_解析由余弦定理,得cos B,结合已知等式得cos Btan B,sin B,B或.答案或8(2021烟台一模)设ABC的内角A,B,C的对边分别为a,b,c,且a1,b2,cos C,则sin B等于_解析由余弦定理,得c2a2b22abcos C4,即c2.由cos C得sin C.由正弦定理,得sin

17、 B(或者由于c2,所以bc2,即三角形为等腰三角形,所以sin Bsin C)答案三、解答题9(2022宜山质检)在ABC中,a,b,c分别是角A,B,C所对的边,且acbcos C.(1)求角B的大小;(2)若SABC,b,求ac的值解(1)由正弦定理,得sin Asin Csin Bcos C,又由于A(BC),所以sin Asin(BC),可得sin Bcos Ccos Bsin Csin Csin Bcos C,即cos B,又B(0,),所以B.(2)由于SABC,所以acsin,所以ac4,由余弦定理可知b2a2c2ac,所以(ac)2b23ac131225,即ac5.10(20

18、21北京卷)在ABC中,a3,b2,B2A.(1)求cos A的值;(2)求c的值解(1)由于a3,b2,B2A,所以在ABC中,由正弦定理,得,所以,故cos A.(2)由(1)知cos A,所以sin A.又由于B2A,所以cos B2cos2A1,所以sin B.在ABC中,sin Csin(AB)sin Acos Bcos Asin B.所以c5.力量提升题组(建议用时:25分钟)一、选择题1(2022温岭中学模拟)在锐角ABC中,若BC2,sin A,则的最大值为()A. B. C1 D3解析由余弦定理,得a2b2c22bc4,由基本不等式可得4bc,即bc3,所以bccos Abc

19、1.答案C2(2021青岛一中调研)在ABC中,三边长a,b,c满足a3b3c3,那么ABC的外形为()A锐角三角形 B钝角三角形C直角三角形 D以上均有可能解析由题意可知ca,cb,即角C最大,所以a3b3aa2bb2ca2cb2,即c3ca2cb2,所以c2a2b2.依据余弦定理,得cos C0,所以0C,即三角形为锐角三角形答案A二、填空题3(2021浙江卷)在ABC中,C90,M是BC的中点若sinBAM,则sinBAC_.解析如图,令BAM,BAC,故|CM|AM|sin(),M为BC的中点,|BM|AM|sin()在AMB中,由正弦定理知,即,sin ,cos ,cos sin c

20、os cos2,整理得12sin cos cos2,所以1,解得tan ,故sin .答案三、解答题4(2021长沙模拟)在ABC中,边a,b,c分别是角A,B,C的对边,且满足bcos C(3ac)cos B.(1)求cos B;(2)若4,b4,求边a,c的值解(1)由正弦定理和bcos C(3ac)cos B,得sin Bcos C(3sin Asin C)cos B,化简,得sin Bcos Csin Ccos B3sin Acos B,即sin(BC)3sin Acos B,故sin A3sin Acos B,所以cos B.(2)由于4,所以|cos B4,所以|12,即ac12.又由于cos B,整理得,a2c240.联立解得或同学用书第65页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服