ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:57.66KB ,
资源ID:3802797      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3802797.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2020年人教A版数学理(广东用)课时作业:第十一章-第一节绝对值不等式.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020年人教A版数学理(广东用)课时作业:第十一章-第一节绝对值不等式.docx

1、 温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。 课时提升作业(七十三) 一、选择题 1.不等式|x-2|>x-2的解集是(  ) (A)(-∞,2)        (B)(-∞,+∞) (C)(2,+∞) (D)(-∞,2)∪(2,+∞) 2.不等式|5x-x2|<6的解集为(  ) (A)(-1,2) (B)(3,6) (C)(-1,2)∪(3,6] (D)(-1,2)∪(3,6) 3.设a>0,不等式|ax+b|

2、  ) (A)1∶2∶3 (B)2∶1∶3 (C)3∶1∶2 (D)3∶2∶1 4.“a<4”是“对任意的实数x,|2x-1|+|2x+3|≥a成立”的(  ) (A)充分必要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 5.不等式|x-1|+|x+2|≥5的解集为(  ) (A)(-∞,-2]∪[2,+∞) (B)(-∞,-1]∪[2,+∞) (C)(-∞,-2]∪[3,+∞) (D)(-∞,-3]∪[2,+∞) 6.不等式|x-2|+|x-1|≤3的最小整数解是(  ) (A)0 (B)-1 (C)1

3、 (D)2 7.(2021·武汉模拟)已知a,b,c∈R且a>b>c,则有(  ) (A)|a|>|b|>|c|     (B)|ab|>|bc| (C)|a+b|>|b+c| (D)|a-c|>|a-b| 8.假如关于x的不等式|x-3|+|x-4|>a的解集是全体实数,则a的取值范围是 (  ) (A)(-∞,-1) (B)(-∞,1) (C)(-1,+∞) (D)(1,+∞) 9.若关于x的不等式|x+1|+|x-2|

4、∞,3] 10.若不等式|x-2|+|x+3|≥a+对任意的实数x恒成立,则实数a的取值范围是 (  ) (A)(-∞,0) (B)[1,4] (C)(-∞,4] (D)(-∞,0)∪[1,4] 二、填空题 11.(2022·湖南高考)不等式|2x+1|-2|x-1|>0的解集为    . 12.若不等式|x+|≥|a-2|+1对一切非零实数x均成立,则实数a的最大值是    . 13.对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为    . 14.(2022·陕西高考)若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取

5、值范围是     . 三、解答题 15.设函数f(x)=|2x+1|-|x-2|. (1)求不等式f(x)>2的解集. (2)若对任意x∈R,f(x)≥t2-t恒成立,求实数t的取值范围. 答案解析 1.【思路点拨】依据确定值的意义,先去掉确定值,简化不等式,再求解. 【解析】选A.原不等式等价于x-2<0,得x<2,选A. 2.【解析】选D.|5x-x2|<6⇔ ∴-1

6、号的不等式,一般利用“零点分割法”分状况争辩(通法)或用几何意义法.对于形如|x-a|+|x-b|c的不等式,利用几何意义或者借助函数的图象去解更为直观简捷. 3.【解析】选B.由原不等式得解集为 {x|

7、分条件,要使|2x-1|+|2x+3|≥a恒成立,即|x-|+|x+|≥恒成立,则有≤2,即a≤4,综上,a<4是|2x-1|+|2x+3|≥a成立的充分不必要条件,选B. 5.【解析】选D.由|x-1|+|x+2|≥|(x-1)-(x+2)|=3及不等号左侧式子的几何意义得在数轴上两个零点x=-3和x=2,故x≤-3或x≥2,故选D. 6.【解析】选A.由确定值的意义,在数轴上到1,2对应的点的距离之和等于3的点就是数0,3对应的点,故|x-2|+|x-1|≤3的解集为{x|0≤x≤3},最小整数解为0. 7.【解析】选D.a>b>c⇒a-c>a-b>0⇒|a-c|>|a-b|. 8

8、解析】选B.由确定值的几何意义可知,|x-3|+|x-4|≥1,故a<1. 9.【解析】选D.由确定值的几何意义知,|x+1|+|x-2|的最小值为3,|x+1|+|x-2|

9、2-3a-4≥0, 解得a≥4或a≤-1. 10.【解析】选D.令f(x)=|x-2|+|x+3|,由确定值的几何意义知f(x)≥5,故若使不等式恒成立,只需a+≤5成马上可,解得{a|a<0或1≤a≤4}. 11.【思路点拨】先移项,然后两边平方,再解不等式. 【解析】由|2x+1|-2|x-1|>0得|2x+1|>2|x-1|,平方得12x>3,x>,故解集为{x|x>}. 答案:{x|x>} 【误区警示】使用平方法去确定值时要特殊当心,格外简洁毁灭增解,必需检查变形的同解性.事实上,平方法去确定值一般只适用于两边非负的不等式,比如对|2x-1|<|x-1|平方,可得(2x-1

10、)2<(x-1)2. 12.【解析】令f(x)=|x+|,由题意知要求 |a-2|+1≤f(x)时a的最大值, 而f(x)=|x+|=|x|+||≥2, ∴|a-2|+1≤2,解得1≤a≤3,故a的最大值是3. 答案:3 13.【解析】|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+|2(y-2)+2|≤1+2|y-2|+2≤5,当x=0,y=3时,|x-2y+1|取得最大值5. 答案:5 14.【思路点拨】利用数轴,首先确定两点a与1,转化为到此两点的距离的和不大于3的x的值存在,其中抓住定点1和动点a是解题的关键;或利用确定值不等式的性质求解. 【解析】方

11、法一:在数轴上确定点1,再移动点a的位置,观看a点的位置在-2和4的位置时,验证符合题意,确定它们是边界位置,所以-2≤a≤4. 方法二:∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,只要有|a-1|≤3,∴-3≤a-1≤3,∴-2≤a≤4. 答案:-2≤a≤4 【变式备选】若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是    . 【解析】方法一:|x+1|+|x-2|表示数轴上一点A(x)到B(-1)与C(2)的距离之和,而|BC|=3. ∴|AB|+|AC|≥3. ∴|a|≥3,∴a≤-3或

12、a≥3. 方法二:设f(x)=|x+1|+ |x-2|= ∴f(x)的图象如图所示, ∴f(x)≥3, ∴|a|≥3,∴a≤-3或a≥3. 方法三:∵|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴|a|≥3.∴a≤-3或a≥3. 答案:(-∞,-3]∪[3,+∞) 15.【解析】(1)f(x)= 当x<-时,-x-3>2,x<-5,∴x<-5; 当-≤x<2时,3x-1>2,x>1,∴12,x>-1,∴x≥2. 综上所述{x|x>1或x<-5}. (2)易得f(x)min=-,若∀x∈R,f(x)≥t2-t恒成立,则只需f(x)min=-≥t2-t⇒2t2-11t+5≤0⇒≤t≤5,综上所述≤t≤5. 【误区警示】去确定值号时简洁忽视零点 如解不等式|2x+1|-|x-4|<2时,要对x分:x<-,-≤x<4,x≥4三种状况,而不是分:x<-,-4三种状况;依据x≤-,-≤x≤4,x≥4的分类也是不合理的,总之分类的标准是“不重不漏”. 关闭Word文档返回原板块。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服