ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:46.27KB ,
资源ID:3802477      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3802477.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2020-2021学年人教A版高中数学选修2-2:第二章-推理与证明-单元同步测试.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020-2021学年人教A版高中数学选修2-2:第二章-推理与证明-单元同步测试.docx

1、其次章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1若实数a,b满足ba0,且ab1,则下列四个数最大的是()Aa2b2B2abC. Da答案A2下面用“三段论”形式写出的演练推理:由于指数函数yax(a0,且a1)在(0,)上是增函数,y()x是指数函数,所以y()x在(0,)上是增函数该结论明显是错误的,其缘由是()A大前提错误 B小前提错误C推理形式错误 D以上都可能解析大前提是:指数函数yax(a0,且a1)在(0,)上是增函数,这是错误的答案A3设a,b,c都是非零实数,则关于a,bc,

2、ac,b四个数,有以下说法:四个数可能都是正数;四个数可能都是负数;四个数中既有正数又有负数则说法中正确的个数有()A0B1 C2D3解析可用反证法推出,不正确,因此正确答案B4下面使用类比推理正确的是()A“若a3b3,则ab”类比推出“若a0b0,则ab”B“(ab)cacbc”类比推出“(ab)cacbc”C“(ab)cacbc”类比推出“(c0)”D“(ab)nanbn”类比推出“(ab)nanbn”解析由类比出的结果应正确知选C.答案C5在证明命题“对于任意角,cos4sin4cos2”的过程:cos4sin4(cos2sin2)(cos2sin2)cos2sin2cos2中应用了(

3、)A分析法B综合法C分析法和综合法综合使用D间接证法答案B6已知f(x)sin(x1)cos(x1),则f(1)f(2)f(3)f(2011)()A2 B.C D0解析f(x)2sin(x1)cos(x1)2sinx,周期T6,且f(1)f(2)f(6)2(00)0,f(2011)f(63351)f(1)2sin.答案B7用数学归纳法证明11),由nk(k1)不等式成立,推证nk1时,左边应增加的项数为()A2k1 B2k1C2k1 D2k解析当nk1时,左边1,所以增加的项数为(2k11)2k12k12k2k.答案D8若数列an是等比数列,则数列anan1()A肯定是等比数列B肯定是等差数列

4、C可能是等比数列也可能是等差数列D肯定不是等比数列解析设等比数列an的公比为q,则anan1an(1q)当q1时,anan1肯定是等比数列;当q1时,anan10,此时为等差数列答案C9假如a,b为非零实数,则不等式成立的充要条件是()Aab且ab0 Ba0Cab,ab0 Da2bab200(ba)ab0ab2a2b0a2bab20,b0,mlg,nlg,则m,n的大小关系是_解析ab00ab2ab()2()2lglg.答案mn14在正三角形中,设它的内切圆的半径为r,简洁求得正三角形的周长C(r)6r,面积S(r)3r2,发觉S(r)C(r)这是平面几何中的一个重要发觉请用类比推理的方法猜想

5、对空间正四周体存在的类似结论为_解析设正四周体的棱长为a,内切球的半径为r,利用等积变形易求得正四周体的高h4r.由棱长a,高h和底面三角形外接圆的半径构成直角三角形,得a2(4r)22,解得a2r.于是正四周体的表面积S(r)4(2r)2sin6024r2,体积V(r)(2r)2sin604r8r3,所以V(r)24r2S(r)答案V(r)S(r)15观看下列等式:1211222312223261222324210照此规律,第n个等式为_解析分n为奇数、偶数两种状况第n个等式的左边为122232(1)n1n2.当n为偶数时,分组求和(1222)(3242)(n1)2n237(2n1).当n为

6、奇数时,(1222)(3242)(n1)2n2n2n2.综上,第n个等式:122232(1)n1n2n(n1)答案122232(1)n1n2n(n1)16对于平面几何中的命题“假如两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“_”答案假如两个二面角的两个半平面分别对应垂直,那么这两个二面角相等或互补三、解答题(本大题共6个小题,共70分解答应写出文字说明、证明过程或演算步骤)17(10分)已知0a1,求证:9.证法1(分析法)0a0,要证9,只需证1a4a9a(1a),即证13a9a(1a),即证9a26a10,即证(3a1)20,上式明显成立

7、原命题成立证法2(综合法) (3a1)20,即9a26a10,13a9a(1a)0a1,9,即9,即9.证法3(反证法)假设9,即90,即0,即0,即0,而0a0,(3a1)20,与(3a1)20相冲突,原命题成立18(12分)下列推理是否正确?若不正确,指出错误之处(1) 求证:四边形的内角和等于360.证明:设四边形ABCD是矩形,则它的四个角都是直角,有ABCD90909090360,所以四边形的内角和为360.(2) 已知和都是无理数,试证:也是无理数证明:依题设和都是无理数,而无理数与无理数之和是无理数,所以必是无理数(3) 已知实数m满足不等式(2m1)(m2)0,用反证法证明:关

8、于x的方程x22x5m20无实根证明:假设方程x22x5m20有实根由已知实数m满足不等式(2m1)(m2)0,解得2m,而关于x的方程x22x5m20的判别式4(m24),2m,m24,0,则 a2.证明a0,要证 a2,只需证 2a,只需证( 2)2(a)2,即证a244 a242(a),即证 (a),即证a2(a22),即证a22,即证(a)20,该不等式明显成立 a2.21(12分)如图,DC平面ABC,EBDC,ACBCEB2DC2,ACB120,P,Q分别为AE,AB的中点(1)证明:PQ平面ACD;(2)求AD与平面ABE所成角的正弦值解(1)证明:P,Q分别为AE,AB的中点,

9、PQEB,又DCEB.PQDC,而PQ平面ACD,DC平面ACD,PQ平面ACD.(2)如图,连接CQ,DP,Q为AB的中点,且ACBC,CQAB.DC平面ABC,EBDC,EB平面ABC.CQEB,故CQ平面ABE.由(1)知,PQDC,又PQEBDC,四边形CQPD为平行四边形DP平面ABE.故DAP为AD与平面ABE所成角在RtDAP中,AD,DP1,sinDAP.因此AD与平面ABE所成角的正弦值为.22(12分)已知f(x)(x,a0),且f(1)log162,f(2)1.(1)求函数f(x)的表达式;(2)已知数列xn的项满足xn(1f(1)(1f(2)(1f(n),试求x1,x2,x3,x4;(3)猜想xn的通项公式,并用数学归纳法证明解(1) 把f(1)log162,f(2)1,代入函数表达式得即解得(舍去a0),f(x)(x1)(2) x11f(1)1,x2(1f(1)(1f(2)(1),x3(1f(3)(1),x4(1).(3) 由(2)知,x1,x2,x3,x4,由此可以猜想xn.证明:当n1时,x1,而,猜想成立假设当nk(kN*)时,xn成立,即xk,则nk1时,xk1(1f(1)(1f(2)(1f(k)(1f(k1)xk(1f(k1)1.当nk1时,猜想也成立,依据可知,对一切nN*,猜想xn都成立

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服