ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:77.25KB ,
资源ID:3801129      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3801129.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2022届数学一轮(浙江专用--理科)-第四章-课时作业-4-4.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届数学一轮(浙江专用--理科)-第四章-课时作业-4-4.docx

1、 第4讲 平面对量的应用 基础巩固题组 (建议用时:40分钟)                    一、选择题 1.在四边形ABCD中,=(1,2),=(-4,2),则该四边形的面积为 (  ) A. B.2 C.5 D.10 解析 ∵·=0,∴⊥, ∴四边形ABCD的面积S=||·||=××2=5. 答案 C 2.在△ABC中,(+)·=||2,则△ABC的外形确定是 (  ) A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形 解析 由(+)·=||2, 得·(+-)=0, 即·(++)=0,2·=0, ∴⊥,∴A

2、=90°. 又依据已知条件不能得到||=||, 故△ABC确定是直角三角形. 答案 C 3.(2022·温州调研)在△ABC中,AB=AC=2,BC=2,则·= (  ) A.2 B.2 C.-2 D.-2 解析 由余弦定理得 cos A= ==-, 所以·=||·||cos A =2×2×=-2,故选D. 答案 D 4.已知|a|=2|b|,|b|≠0,且关于x的方程x2+|a|x-a·b=0有两相等实根,则向量a与b的夹角是 (  ) A.- B.- C. D. 解析 由已知可得Δ=|a|2+4a·b=0, 即4|b|2+4×2|b|2c

3、os θ=0, ∴cos θ=-, 又∵0≤θ≤π,∴θ=. 答案 D 5.(2021·杭州质量检测)设O是△ABC的外心(三角形外接圆的圆心).若=+,则∠BAC的度数等于 (  ) A.30° B.45° C.60° D.90° 解析 取BC的中点D,连接AD,则+=2 .由题意得3=2,∴AD为BC的中线且O为重心.又O为外心,∴△ABC为正三角形,∴∠BAC=60°,故选C. 答案 C 二、填空题 6.(2021·广州综合测试)在△ABC中,若A·A=A·=2,则边AB的长等于________. 解析 由题意知·+·=4,即·(+)=4,即·A=4,∴||=

4、2. 答案 2 7.(2022·天津十二区县重点中学联考)在边长为1的正方形ABCD中,M为BC的中点,点E在线段AB上运动,则·的最大值为________. 解析 以点A为坐标原点,AB,AD所在直线为x,y轴建立平面直角坐标系,则C(1,1),M,设E(x,0),x∈[0,1],则·=(1-x,1)·=(1-x)2+,x∈[0,1]单调递减,当x=0时,·取得最大值. 答案  8.(2021·太原模拟)已知向量a=(cos θ,sin θ),向量b=(,-1),则|2a-b|的最大值与最小值的和为________. 解析 由题意可得a·b=cos θ-sin θ=2cos,则|

5、2a-b|===∈[0,4],所以|2a-b|的最大值与最小值的和为4. 答案 4 三、解答题 9.(2021·杭州其次中学模拟)已知向量a=,b=(cos x,-1). (1)当a∥b时,求tan 2x的值; (2)求函数f(x)=(a+b)·b在上的值域. 解 (1)∵a∥b,∴sin x·(-1)-·cos x=0, 即sin x+cos x=0, tan x=-,∴tan 2x==. (2)f(x)=(a+b)·b=a·b+b2 =sin xcos x-+cos2x+1 =sin 2x-+cos 2x++1 =sin. ∵-≤x≤0,∴-π≤2x≤0,-≤2x

6、+≤, ∴-≤sin≤, ∴f(x)的值域为. 10.(2022·陕西卷)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上. (1)若++=0,求||; (2)设=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值. 解 (1)法一 ∵++=0, 又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y), ∴解得 即=(2,2),故||=2. 法二 ∵++=0, 则(-)+(-)+(-)=0, ∴=(++)=(2,2), ∴||=2. (2)∵=m

7、+n, ∴(x,y)=(m+2n,2m+n), ∴ 两式相减得,m-n=y-x, 令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1. 力气提升题组 (建议用时:35分钟) 11.若函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的图象如图所示,M,N分别是这段图象的最高点和最低点,且·=0(O为坐标原点),则A等于 (  ) A. B.π C.π D.π 解析 由题意知M,N, 又·=×π-A2=0,∴A=π. 答案 B 12.(2021·舟山联考)已知在平面直角坐标系中,O(

8、0,0),M(1,1),N(0,1),Q(2,3),动点P(x,y)满足不等式0≤·≤1,0≤·≤1,则z=·的最大值为________. 解析 =(x,y),=(1,1),=(0,1), ∴·=x+y,·=y, 即在条件下,求z=2x+3y的最大值,由线性规划学问,当x=0,y=1时,zmax=3. 答案 3 13.在△ABC中,A=90°,AB=1,AC=2,设点P,Q满足=λ,=(1-λ),λ∈R.若·=-2,则λ=________. 解析 ∵=-=(1-λ)-, =-=λ-, ∴·=-2⇒[(1-λ)-]·[λ-]=-2, 化简得(1-λ)λ·-(1-λ)2-λ2+·

9、=-2,又由于·=0,2=4,2=1,所以解得λ=. 答案  14.(2021·绍兴五校联考)已知向量m=,n=. (1)若m·n=1,求cos的值; (2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cos B=bcos C,求函数f(A)的取值范围. 解 m·n=sin cos +cos2 =sin +×cos + =sin+. (1)∵m·n=1,∴sin=, cos=1-2sin2=, cos=-cos=-. (2)∵(2a-c)cos B=bcos C,由正弦定理得 (2sin A-sin C)cos B=sin B

10、cos C, ∴2sin Acos B=sin Ccos B+sin Bcos C, ∴2sin Acos B=sin(B+C). ∵A+B+C=π,∴sin(B+C)=sin A,且sin A≠0, ∴cos B=,B=.∴0<A<. ∴<+<, <sin<1. 又∵f(x)=m·n=sin+, ∴f(A)=sin+, 故1<f(A)<. 故函数f(A)的取值范围是. 15.如图所示,已知点F(1,0),直线l:x=-1,P为平面上的一动点,过P作直线l的垂线,垂足为点Q,且·=·. (1)求动点P的轨迹C的方程; (2)过点F的直线交轨迹C于A、B两点,交直线

11、l于点M.已知=λ1,=λ2,求λ1+λ2的值. 解 (1)设点P(x,y),则Q(-1,y), 由·=·,得 (x+1,0)·(2,-y)=(x-1,y)·(-2,y),化简得P的轨迹C的方程为y2=4x. (2)设直线AB的方程为x=my+1(m≠0). 设A(x1,y1),B(x2,y2),又M, 联立方程消去x,得 y2-4my-4=0,Δ=(-4m)2+16>0, 故 由=λ1,=λ2,得 y1+=-λ1y1,y2+=-λ2y2,整理,得 λ1=-1-,λ2=-1-, 所以λ1+λ2=-2-=-2-· =-2-·=0. 特殊提示:老师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服