ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:59.47KB ,
资源ID:3801117      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3801117.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高中数学(北师大版)必修四教案:2.5-考点解析:平面向量数量积.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学(北师大版)必修四教案:2.5-考点解析:平面向量数量积.docx

1、 平面对量数量积四大考点解析 考点一. 考查概念型问题 例1.已知、、是三个非零向量,则下列命题中真命题的个数( ) ⑴; ⑵反向 ⑶; ⑷= A.1 B.2 C.3 D.4 分析:需对以上四个命题逐一推断,依据有两条,一仍是向量数量积的定义;二是向量加法与减法的平行四边形法则. 解:(1)∵·=||·||cosθ ∴由|·|=||·||及、为非零向量可得|cosθ|=1 ∴θ=0或π,∴∥且以上各步均可逆,故命题(1)是真命题. (2)若,反向,则、的夹有为π,∴·=||·||cosπ=-||·||且以上各步可逆

2、故命题(2)是真命题. (3)当⊥时,将向量,的起点确定在同一点,则以向量,为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|+|=|-|.反过来,若|+|=|-|,则以,为邻边的四边形为矩形,所以有⊥,因此命题(3)是真命题. (4)当||=||但与的夹角和与的夹角不等时,就有|·|≠|·|,反过来由|·||=|·|也推不出||=||.故(4)是假命题. 综上所述,在四个命题中,前3个是真命题,而第4个是假命题,应选择(C). 评注:两向量同向时,夹角为0(或0°);而反向时,夹角为π(或180°);两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0或

3、π,反过来若两向量的夹角为0或π,则两向量共线. 考点二、考查求模问题 例2.已知向量,若不超过5,则k的取值范围是__________。 分析:若则,或,对于求模有时还运用平方法。 解:由,又,由模的定义,得:解得: ,故填。 评注:本题是已知模的逆向题,运用定义即可求参数的取值范围。 例3.(1)已知均为单位向量,它们的夹角为60°,那么=( ) A. B. C. D. 4 (2)已知向量,向量,则的最大值是___________。 解:(1) 所以,故选C。 (2)由题意,知, 又 则的最大值为4。 评注:模的问题接受平方法能使过程简

4、化。 考点三、考查求角问题 例4.已知向量+3垂直于向量7-5,向量-4垂直于向量7-2,求向量与的夹角. 分析:要求与的夹角,首先要求出与的夹角的余弦值,即要求出||及||、·,而本题中很难求出||、||及·,但由公式cosθ=可知,若能把·,||及||中的两个用另一个表示出来,即可求出余弦值,从而可求得与的夹角θ. 解:设与的夹角为θ. ∵+3垂直于向量7-5,-4垂直于7-2, 即 解之得 2=2· 2=2· ∴2=2 ∴||=|| ∴cosθ=== ∴θ= 因此a与b的夹角为. 考点四、考查交汇问题 是指向量与立几、解几、数列、三角等的交汇题,创新题。 例4.(1)直角坐标平面xoy中,若定点A(1,2)与动点P(x,y)满足,则点P的轨迹方程是_________________。 (2)已知直线与圆O:相交于A、B两点,且,则___________。 解:(1)由,有,即故应填 (2)先由圆的几何性质,求得两向量的夹角是120. 故填. 评注:第(2)小题关键是运用几何法求出两向量的夹角,再运用向量的数量积公式即可。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服