ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:63.69KB ,
资源ID:3797856      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3797856.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2021人教A版高三数学(理)二轮复习-专题整合训练1-2-2-Word版含解析.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021人教A版高三数学(理)二轮复习-专题整合训练1-2-2-Word版含解析.docx

1、 第2讲 解三角形问题 一、选择题 1.(2022·西安模拟)△ABC的三个内角A,B,C所对的边分别为a,b,c,且 asin Asin B+bcos2 A=a,则= (  ). A. B.2 C. D.2 解析 由于asin Asin B+bcos2 A=a,所以由正弦定理,得sin Asin Asin B+sin B=sin A,即sin B=sin A,所以=. 答案 A 2.(2022·益阳模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.若asin A+bsin B-csin C=asin B,则角C等于 (  ). A. B. C.

2、 D. 解析 由正弦定理,得a2+b2-c2=ab, 所以cos C==,又0<C<π,所以C=. 答案 A 3.(2022·吉林省试验中学一模)在△ABC中,sin(A+B)·sin(A-B)=sin2C,则此三角形的外形是 (  ). A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形 解析 由于sin(A+B)sin(A-B)=sin2 C,所以sin (A-B)=sin C,又由于A,B,C为△ABC的内角,所以A-B=C,所以A=90°,所以△ABC为直角三角形. 答案 B 4.(2022·福州模拟)在△ABC中,BC=1,B=,△ABC的面积S

3、=,则sin C= (  ). A. B. C. D. 解析 由于在△ABC中,BC=1,B=,△ABC的面积S=,所以S△ABC=BC×BAsin B=,即×1×BA×=,解得BA=4.又由余弦定理,得AC2=BC2+BA2-2BC·BAcos B,即得AC=,由正弦定理,得=,解得sin C=. 答案 D 5.(2022·重庆卷)已知△ABC的内角A,B,C满足sin 2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,则下列不等式肯定成立的是 (  ). A.bc(b+c)>8 B.ab(a+b)>16

4、 C.6≤abc≤12 D.12≤abc≤24 解析 由sin 2A+sin(A-B+C)=sin(C-A-B)+, 得2sin A·cos A+sin(C-B)·cos A+cos (C-B)· sin A=sin(C-B)·cos A-cos (C-B)·sin A+, 即2sin A[cos A+cos C·cos B+sin C·sin B]=, 即2sin A[-cos (B+C)+cos B·cos C+sin C·sin B]=,化简, 得sin A·sin B·sin C=, 由面积公式,得=,所以(abc)2=64S3∈[64,512],即abc∈[8,16 ]

5、从而可以排解选项C和D;对于选项A:bc(b+c)>bca≥8,即bc(b+c)>8,故A正确;对于选项B:ab(a+b)>abc≥8,即ab(a+b)>8,故B错误,故选A. 答案 A 二、填空题 6.(2022·福建卷)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于________. 解析 由余弦定理得,BC2=AB2+AC2-2AB·AC·cos A, ∴12=AB2+16-2×AB×4×cos 60°,解得AB=2, ∴S△ABC=·AB·AC·sin A=×2×4×sin 60°=2. 答案 2 7.(2022·天津卷)在△ABC中,内角A,B,

6、C所对的边分别是a,b,c.已知b-c=a,2sin B=3sin C,则cos A的值为________. 解析 ∵2sin B=3sin C,由正弦定理得2b=3c,∴b=c, 又b-c=a,∴a=4(b-c),∴a=2c. ∴cos A===-. 答案 - 8.(2022·江苏卷)若△ABC的内角满足sin A+sin B=2sin C,则cos C的最小值是________. 解析 ∵sin A+sin B=2sin C. 由正弦定理可得a+b=2c,即c=, cos C== =≥=, 当且仅当3a2=2b2即=时等号成立. ∴cos C的最小值为. 答案 

7、三、解答题 9.(2022·北京卷)如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=. (1)求sin ∠BAD; (2)求BD,AC的长. 解 (1)在△ADC中,由于cos∠ADC=, 所以sin ∠ADC=. 所以sin ∠BAD=sin(∠ADC-∠B) =sin ∠ADCcos∠B-cos∠ADCsin ∠B =×-×=. (2)在△ABD中,由正弦定理得 BD===3. 在△ABC中,由余弦定理得 AC2=AB2+BC2-2AB·BC·cos B =82+52-2×8×5×=49.所以AC=7. 10.已知△ABC的

8、三个内角A,B,C所对的边分别是a,b,c,B=,b=,求a+c的范围. 解 法一 由B=,得A+C=. 所以sin A+sin C=sin A+sin=sin A+= sin A+cos A= sin.又0<A<,所以<A+<. 所以<sin≤1.所以sin A+sin C∈. 由正弦定理,得====2, 所以a+c=2sin A+2sin C=2(sin A+sin C). 所以a+c∈(,2]. 法二 由余弦定理,得b2=a2+c2-2accos =(a+c)2-2ac+ac=(a+c)2-ac≥(a+c)2-2=,当且仅当a=c时,取等号. 所以(a+c)2≤4,故

9、a+c≤2. 又a+c>b=,所以<a+c≤2,即a+c∈(,2]. 11.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C. 现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲动身2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=,cos C=. (1)求索道AB的长; (2)问:乙动身多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在

10、C处相互等待的时间不超过3分钟,乙步行的速度应把握在什么范围内? 解 (1)在△ABC中,由于cos A=,cos C=, 所以sin A=,sin C=. 从而sin B=sin[π-(A+C)]=sin(A+C) =sin Acos C+cos Asin C =×+×=. 由正弦定理=,得 AB=·sin C=×=1 040(m). 所以索道AB的长为1 040 m. (2)设乙动身t min后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m, 所以由余弦定理得 d2=(100+50t)2+(130t)2-2×130t×(100+50t)× =200(37t2-70t+50), 因0≤t≤,即0≤t≤8, 故当t=(min)时,甲、乙两游客距离最短. (3)由正弦定理=,得BC=·sin A=×=500(m). 乙从B动身时,甲已走了50×(2+8+1)=550(m),还需走710 m才能到达C. 设乙步行的速度为v m/min,由题意得-3≤-≤3,解得≤v≤,所以为使两位游客在C处相互等待的时间不超过3分钟,乙步行的速度应把握在(单位:m/min)范围内.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服