ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:528KB ,
资源ID:3768097      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3768097.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学选修2-2第一章知识点及测试题(简约打印版)复习课程.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学选修2-2第一章知识点及测试题(简约打印版)复习课程.doc

1、高中数学选修2-2第一章知识点及测试题(简约打印版)精品文档高中数学选修2-2知识点总结第一章 导数及其应用1. 平均变化率 2. 导数(或瞬时变化率) 导函数(导数): 3. 导数的几何意义:函数yf(x)在点x0处的导数(x0)就是曲线yf(x)在点(x0,f(x0)处的切线的斜率,即k(x0)应用:求切线方程,分清所给点是否为切点4. 导数的运算:(1)几种常见函数的导数:(C)0(C为常数); ()(x0,); (sinx)cosx;(cosx)sinx; (ex)ex; (ax)axlna(a0,且a1); (a0,且a1)(2)导数的运算法则:u(x)v(x)u(x)v(x); u

2、(x)v(x)u(x)v(x)u(x)v(x);.5. 设函数在点处有导数,函数在点的对应点处有导数,则复合函数在点处也有导数,且 或。复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的选取,以及区间的分割.微积分基本定理.物理上的应用:汽车行驶路程、位移;变力做功问题。7. 函数的单调性(1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数;(2)如果在某区间内恒有,则为常数。反之,若已知可导函数在某个区间上单调递增,则,且不恒为零;可

3、导函数在某个区间上单调递减,则,且不恒为零.求单调性的步骤: 确定函数的定义域(不可或缺,否则易致错); 解不等式; 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”隔开,不能用“”连结。8. 极值与最值对于可导函数,在处取得极值,则.最值定理:连续函数在闭区间上一定有最大最小值.若在开区间有唯一的极值点,则是最值点。求极值步骤: 确定函数的定义域(不可或缺,否则易致错); 解不等式; 检验的根的两侧的符号(一般通过列表),判断极大值,极小值,还是非极值点.求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某就是最大或者最小。9. 恒成立问

4、题 “”和“”,注意参数的取值中“=”能否取到。例1 ,过的切线方程为 例2 设函数在处取得极值。(1)求的值;(2)若对于任意的,都有成立,求c的取值范围。(答:(1)a=-3,b=4;(2))例3 设函数 (1)求函数的单调区间、极值.(2)若当时,恒有,试确定a的取值范围.(答:(1)在(a,3a)上单调递增,在(-,a)和(3a,+)上单调递减; 高二数学选修2-2导数及其应用检测题一、 选择题(每题5分,共60分)1.方程在区间内根的个数为 ()ABCD2函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点 ( )A1个B2个C3个D 4个3已知曲线 上一点P

5、,则过点P的切线的斜率为A1 B-1 C2 D-24,若,则的值等于 ( )A B C D5函数f(x)=3x-4x3(x0,1)的最大值是 ( )A1 B C0 D-1 6如图是导函数的图象,那么函数在下面哪个区间是减函数( )A. B. C. D.7.用数学归纳法证明 ()时,第一步应验证不等式( )A B C D8.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm处,则克服弹力所做的功为( ) (A)0.28J (B)0.12J (C)0.26J (D)0.18J 9.定积分的结果是 ( )A1 B C D10已知函数的图象上一点(1,1)及邻近一点

6、(1+,1+),则等于( )A4 B C D11. 已知函数在处可导,则等于 () ABCD12. 函数,则导数=( )A BC D二、填空题(每题5分,共20分)13.已知,由此你猜想出第n个数为_14. 已知函数在时取得极值,则= 15、函数 的单调递减区间为16.已知为一次函数,且,则= _.三、解答题(要写出必要的解题步骤,书写规范,不得涂抹):17(本小题满分10分)已知函数,当时,的极大值为7;当 时,有极小值求(1)的值;(2)函数的极小值18、(本小题满分12分)已知中至少有一个小于2.19、(本小题满分12分)求由与直线所围成图形的面积.20、(本小题满分12分)用长为18

7、cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?21、(本小题满分12分)已知函数 (1)求的单调递减区间; (2)若在区间2,2上的最大值为20,求它在该区间上的最小值22、(本小题满分12分)已知f(x)=x3+ax2+bx+c,在x1与x2时,都取得极值。求a,b的值;若x3,2都有f(x)恒成立,求c的取值范围。一、填空题:1函数的单调增区间是_;2已知函数在上单调递增,则的取值范围是_;3函数在区间和内单调递增,且在区间内单调递减,则_;4已知,若函数在区间内单调递增,则的取值范围是_;5若函数既有极大值又有极小值,则的取值范围是_.二、解答题:6已知函数,求的单调区间。7已知函数,求导函数,并确定的单调区间。8已知函数,其中,讨论函数的单调性。9函数,求函数的单调区间和极值;若关于的方程有三个不同的实根,求实数的取值范围。参考答案1 2 3 45,或6递增区间是;递减区间是7;当时,递增区间是,递减区间是和;当时,递增区间是,递减区间是和;当时,递减区间是和,无递增区间。8当时,在与内单调递增;当时,在与内单调递增,在与内单调递减。9递减区间是,递增区间是与;当时,有极大值,当时,有极小值收集于网络,如有侵权请联系管理员删除

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服