ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:196.73KB ,
资源ID:3714775      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3714775.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2020年人教A版数学文(广东用)课时作业:8.3圆-的-方-程.docx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020年人教A版数学文(广东用)课时作业:8.3圆-的-方-程.docx

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(四十九)一、选择题 1.(2021珠海模拟)已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为( )(A)(-1,1) (B)(-1,0)(C)(1,-1) (D)(0,-1)2.(2021北京模拟)直线l将圆x2+y2-2x+4y-4=0平分,且在两坐标轴上的截距相等,则直线l的方程是( )(A)x-y+1=0,2x-y=0(B)x-y-1=0,x-2y=0(C)x+y+1=0,2x+y=0(D)x-y+1=

2、0,x+2y=03.若曲线C:x2+y2+2ax-4ay+5a2-4=0上全部的点均在其次象限内,则a的取值范围为( )(A)(-,-2) (B)(-,-1)(C)(1,+) (D)(2,+)4.若原点在圆(x-m)2+(y+m)2=8的内部,则实数m的取值范围是( )(A) (B)(C)-2m2 (D)0m25.(2021惠州模拟)已知两点A(-2,0),B(0,2),点C是圆x2+y2-4x+4y+6=0上任意一点,则点C到直线AB距离的最小值是( )(A) (B) (C) (D) 6.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(

3、 )(A)(x+2)2+(y-2)2=1(B)(x-2)2+(y+2)2=1(C)(x+2)2+(y+2)2=1(D)(x-2)2+(y-2)2=17.(2021深圳模拟)在平面直角坐标系中,落在一个圆内的曲线可以是( )(A)xy=1 (B)(C)|3x-2y|=1 (D) 8.(力气挑战题)已知两点A(0,-3),B(4,0),若点P是圆x2+y2-2y=0上的动点,则ABP面积的最小值为( )(A)6 (B) (C)8 (D)二、填空题9.圆C:x2+y2+2x-2y-2=0的圆心到直线3x+4y+14=0的距离是_.10.若圆x2+y2+(a2-1)x+2ay-a=0关于直线x-y+1

4、=0对称,则实数a的值为_.11.(2021汕头模拟)设二次函数与x轴正半轴的交点分别为A,B,与y轴正半轴的交点是C,则过A,B,C三点的圆的标准方程是_.12.若圆心在x轴上,半径为的圆C位于y轴左侧且与直线x+y=0相切,则圆C的方程是_.三、解答题13.圆C通过不同的三点P(k,0),Q(2,0),R(0,1),已知圆C在点P处的切线斜率为1,试求圆C的方程.14.(2021广州模拟)如图,已知圆C:(x-1)2+y2=r2(r1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上.(1)当r=2时,求满足条件的点P的坐标.(2)当r(1,+)时,求点N的

5、轨迹G的方程.15.(力气挑战题)如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程.(2)曲线C上是否存在点P,满足若存在,指出有几个这样的点;若不存在,请说明理由.答案解析1.【解析】选D.由x2+y2+kx+2y+k2=0知所表示圆的半径当k=0时,此时圆的方程为x2+y2+2y=0,即x2+(y+1)2=1,圆心为(0,-1).2.【解析】选C.由已知直线l过圆x2+y2-2x+4y-4=0的圆心(1,-2),当直线在两坐标轴上的截距均为0时,

6、设方程为y=kx,又过(1,-2)点,所以-2=k,得l的方程为y=-2x,即2x+y=0.当直线在两坐标轴上的截距均不为0时,设方程为将(1,-2)代入得:a=-1,得l的方程为x+y+1=0.综上l的方程为2x+y=0或x+y+1=0.3.【解析】选D.曲线C的方程可化为(x+a)2+(y-2a)2=4,则该方程表示圆心为(-a,2a),半径等于2的圆.由于圆上的点均在其次象限内,所以a2.4.【解析】选C.由已知得m2+m28,即m24,解得-2m2.5.【解析】选A.由已知得直线AB的方程为即:x-y+2=0,又圆x2+y2-4x+4y+6=0的圆心为(2,-2),半径所以其圆心到直线

7、x-y+2=0的距离为由平面图形的性质得点C到直线AB距离的最小值为6.【解析】选B.圆C2的圆心与圆C1的圆心关于直线x-y-1=0对称,所以设圆C2的圆心为(a,b),则且在x-y-1=0上,解得a=2,b=-2.所以圆C2的方程为(x-2)2+(y+2)2=1.7.【解析】选D.由已知圆内的点需有范围限制,而A中,x0,y0,B中,xR,C中,x,yR,只有D中,x需满足:得0x9.8.【思路点拨】先求点P到直线AB的距离,再求SABP的最小值.【解析】选B.如图,过圆心C向直线AB作垂线交圆于点P,连接BP,AP,这时ABP的面积最小.直线AB的方程为即3x-4y-12=0,圆心C到直

8、线AB的距离为ABP的面积的最小值为9.【解析】由于圆心坐标为(-1,1),所以圆心到直线3x+4y+14=0的距离为答案:310.【解析】依题意知直线x-y+1=0经过圆x2+y2+(a2-1)x+2ay-a=0的圆心所以解得a=3或a=-1,当a=-1时,方程x2+y2+(a2-1)x+2ay-a=0不能表示圆,所以只能取a=3.答案:311.【思路点拨】先由已知求出A,B,C三点坐标,再依据坐标特点选出方程,求方程.【解析】由已知三个交点分别为A(1,0),B(3,0),C(0,1),易知圆心横坐标为2,则令圆心为E(2,b),由|EA|=|EC|得b=2,半径为故圆的方程为(x-2)2

9、+(y-2)2=5.答案:(x-2)2+(y-2)2=512.【解析】设圆心为(a,0)(a0),则解得a=-2,所以圆的方程为(x+2)2+y2=2.答案:(x+2)2+y2=213.【解析】设圆C的方程为x2+y2+Dx+Ey+F=0,则k,2为x2+Dx+F=0的两根,k+2=-D,2k=F,即D=-(k+2),F=2k.又圆过R(0,1),故1+E+F=0.E=-2k-1.故所求圆的方程为x2+y2-(k+2)x-(2k+1)y+2k=0,圆心坐标为圆C在点P处的切线斜率为1,k=-3,D=1,E=5,F=-6.所求圆C的方程为x2+y2+x+5y-6=0.14.【解析】(1)方法一:

10、由已知得,r=2时,可求得M点的坐标为M(-1,0).设P(0,b),则由kCPkMP=-1(或用勾股定理)得:b2=1,b=1,即点P的坐标为(0,1).方法二:同上可得M(-1,0),设N(x,y),则解得N(1,2),MN的中点P的坐标为(0,1).(2)方法一:设N(x,y),由已知得,在圆方程中令y=0,求得M点的坐标为(1-r,0).设P(0,b),则由kCPkMP=-1(或用勾股定理)得:r=b2+1,点P为线段MN的中点,x=r-1=b2,y=2b,又r1,点N的轨迹G的方程为y2=4x(x0).方法二:设N(x,y),同上可得M(1-r,0),则消去r,又r1,点N的轨迹G的

11、方程为y2=4x(x0).15.【解析】(1)圆弧C1所在圆的方程为x2+y2=169,令x=5,解得M(5,12),N(5,-12).则线段AM中垂线的方程为y-6=2(x-17),令y=0,得圆弧C2所在圆的圆心为(14,0),又圆弧C2所在圆的半径为r2=29-14=15,所以圆弧C2的方程为(x-14)2+y2=225(5x29).(2)假设存在这样的点P(x,y),则由得x2+y2+2x-29=0,由解得x=-70(舍去).由解得x=0(舍去),综上知,这样的点P不存在.【误区警示】求圆弧C2的方程时经常遗漏x的取值范围,其错误缘由是将圆弧习惯认为或误认为圆.【变式备选】如图,在平面

12、直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD相互垂直,且AC和BD分别在x轴和y轴上.(1)求证:F0.(2)若四边形ABCD的面积为8,对角线AC的长为2,且求D2+E2-4F的值.(3)设四边形ABCD的一条边CD的中点为G,OHAB且垂足为H.试用平面解析几何的争辩方法推断点O,G,H是否共线,并说明理由.【解析】(1)方法一:由题意,原点O必定在圆M内,即点(0,0)代入方程x2+y2+Dx+Ey+F=0的左边所得的值小于0,于是有F0,即证.方法二:由题意,不难发觉A,C两点分别在x轴正、负半轴上.设两点坐标分别为A(a,0),C(c

13、,0),则有ac0.对于圆的方程x2+y2+Dx+Ey+F=0,当y=0时,可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,于是有xAxC=ac=F.由于ac0,故F0.(2)不难发觉,对角线相互垂直的四边形ABCD的面积由于S=8,|AC|=2,可得|BD|=8.又由于所以BAD为直角,又由于四边形是圆M的内接四边形,故|BD|=2r=8r=4.对于方程x2+y2+Dx+Ey+F=0所表示的圆,可知所以D2+E2-4F=4r2=64.(3)设四边形四个顶点的坐标分别为A(a,0),B(0,b),C(c,0),D(0,d).则可得点G的坐标为即又且ABOH,故要使G,O,H三点共线,只需证即可.而且对于圆M的一般方程x2+y2+Dx+Ey+F=0,当y=0时可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,于是有xAxC=ac=F.同理,当x=0时,可得y2+Ey+F=0,其中方程的两根分别为点B和点D的纵坐标,于是有yByD=bd=F.所以即ABOG.故O,G,H三点必定共线.关闭Word文档返回原板块。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服