ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:98.28KB ,
资源ID:3714605      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3714605.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2020年人教A版数学理(广东用)课时作业:第八章-第五节曲线与方程.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020年人教A版数学理(广东用)课时作业:第八章-第五节曲线与方程.docx

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(五十四)一、选择题 1.(2021长春模拟)已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为()(A)x2+y2=2(B)x2+y2=4(C)x2+y2=2(x2)(D)x2+y2=4(x2)2.|y|-1=表示的曲线是()(A)抛物线(B)一个圆(C)两个圆(D)两个半圆3.设x1,x2R,常数a0,定义运算“*”:x1*x2=(x1+x2)2-(x1-x2)2,若x0,则动点P(x,)的轨迹是()(A)圆(B)椭圆的一

2、部分(C)双曲线的一部分(D)抛物线的一部分4.(2021青岛模拟)已知A,B是圆O:x2+y2=16上的两点,且|AB|=6,若以AB为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方程是()(A)(x-1)2+(y+1)2=9(B)(x+1)2+(y-1)2=9(C)(x-1)2+(y-1)2=9(D)(x+1)2+(y+1)2=95.(2021重庆模拟)设动点P在直线x=1上,O为坐标原点,以OP为直角边、点O为直角顶点作等腰直角OPQ,则动点Q的轨迹是()(A)圆(B)两条平行直线(C)抛物线(D)双曲线6.(2021西安模拟)已知点A(1,0)和圆C:x2+y2=4上一点R,动点

3、P满足=2,则点P的轨迹方程为()(A)(x-)2+y2=1(B)(x+)2+y2=1(C)x2+(y-)2=1(D)x2+(y+)2=17.(2021郑州模拟)在ABC中,A为动点,B,C为定点,B(-,0),C(,0)(a0)且满足条件sinC-sinB=sinA,则动点A的轨迹方程是()(A)-=1(y0)(B)-=1(x0)(C)-=1(x)二、填空题8.平面上有三个点A(-2,y),B(0,),C(x,y),若,则动点C的轨迹方程是.9.已知P是椭圆+=1上的任意一点,F1,F2是它的两个焦点,O为坐标原点,=+,则动点Q的轨迹方程是.10.(2021佛山模拟)曲线C是平面内与两个定

4、点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a1)的点的轨迹,给出下列三个结论:曲线C过坐标原点;曲线C关于坐标原点对称;若点P在曲线C上,则F1PF2的面积不大于a2.其中,全部正确结论的序号是.11.(力气挑战题)设椭圆方程为x2+=1,过点M(0,1)的直线l交椭圆于A,B两点,O是坐标原点,点P满足=(+),当l绕点M旋转时,动点P的轨迹方程为.三、解答题12.(2021天津模拟)已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.(1)求圆C的圆

5、心轨迹L的方程.(2)求满足条件m=n的点M的轨迹Q的方程.(3)在(2)的条件下,摸索究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,恳求出点B的坐标;若不存在,请说明理由.13.(力气挑战题)已知线段AB的两个端点A,B分别在x轴、y轴上滑动,|AB|=3,点M满足2=.(1)求动点M的轨迹E的方程.(2)若曲线E的全部弦都不能被直线l:y=k(x-1)垂直平分,求实数k的取值范围.答案解析1.【解析】选D.设P(x,y),则|PM|2+|PN|2=|MN|2,所以x2+y2=4(x2).【误区警示】本题易误选B.错误的根本缘由是忽视了曲线与

6、方程的关系,从而导致漏掉了x2.2.【解析】选D.原方程等价于或3.【解析】选D.x1*x2=(x1+x2)2-(x1-x2)2,=2.则P(x,2).设P(x1,y1),即消去x得=4ax1(x10,y10),故点P的轨迹为抛物线的一部分.4.【解析】选A.由于以AB为直径的圆恰好经过点C(1,-1),CACB,故ACB为直角三角形,又M为斜边AB中点,|MC|=|AB|=3,故点M的轨迹是以C(1,-1)为圆心,3为半径的圆,其方程为(x-1)2+(y+1)2=9.5.【思路点拨】设动点P的纵坐标t为参数,来表示|OP|=|OQ|,=0,并消去参数得轨迹方程,从而确定轨迹.【解析】选B.设

7、P(1,t),Q(x,y),由题意知|OP|=|OQ|,1+t2=x2+y2,又=0,x+ty=0,t=-,y0.把代入,得(x2+y2)(y2-1)=0,即y=1.所以动点Q的轨迹是两条平行直线.6.【解析】选A.设P(x,y),R(x0,y0),则有=(1-x0,-y0),=(x-1,y),又=2,又R(x0,y0)在圆x2+y2=4上,(-2x+3)2+(-2y)2=4,即(x-)2+y2=1.7.【解析】选D.sinC-sinB=sinA,由正弦定理得到|AB|-|AC|=|BC|=a(定值).A点轨迹是以B,C为焦点的双曲线右支(不包括点(,0),其中实半轴长为,焦距为|BC|=a.

8、虚半轴长为=a.动点A的轨迹方程为-=1(x).8.【解析】=(0,)-(-2,y)=(2,-),=(x,y)-(0,)=(x,),=0,(2,-)(x,)=0,即y2=8x.动点C的轨迹方程为y2=8x.答案:y2=8x9.【解析】设P点关于原点的对称点为M,由=+,又+=2=-2,设Q(x,y),则=-=-(x,y)=(-,-),即P点坐标为(-,-),又P在椭圆上,则有+=1,即+=1.答案:+=110.【解析】由于原点O到两个定点F1(-1,0),F2(1,0)的距离的积是1,而a1,所以曲线C不过原点,即错误;由于F1(-1,0),F2(1,0)关于原点对称,所以|PF1|PF2|=

9、a2对应的轨迹关于原点对称,即正确;由于=|PF1|PF2|sinF1PF2|PF1|PF2|=a2,即面积不大于a2,所以正确.答案:11.【思路点拨】设直线l的斜率为k,用参数法求解,但需验证斜率不存在时是否符合要求.【解析】直线l过点M(0,1),当斜率存在时,设其斜率为k,则l的方程为y=kx+1.设A(x1,y1),B(x2,y2),由题设可得点A,B的坐标(x1,y1),(x2,y2)是方程组的解,将代入并化简得,(4+k2)x2+2kx-3=0,所以于是=(+)=(,)=(,).设点P的坐标为(x,y),则消去参数k得4x2+y2-y=0,当斜率不存在时,A,B中点为坐标原点(0

10、,0),也满足方程,所以点P的轨迹方程为4x2+y2-y=0.答案:4x2+y2-y=0【方法技巧】利用参数法求轨迹方程的技巧参数法是求轨迹方程的一种重要方法,其关键在于选择恰当的参数.一般来说,选参数时要留意:动点的变化是随着参数的变化而变化的,即参数要能真正反映动点的变化特征;参数要与题设的已知量有着亲热的联系;参数要便于轨迹条件中的各种相关量的计算,也要便于消去.常见的参数有角度、斜率、点的横坐标、纵坐标等.12.【解析】(1)两圆的半径都为1,两圆的圆心分别为C1(0,-4),C2(0,2),由题意得|CC1|=|CC2|,可知圆心C的轨迹是线段C1C2的垂直平分线,C1C2的中点为(

11、0,-1),直线C1C2的斜率不存在,故圆心C的轨迹是线段C1C2的垂直平分线,其方程为y=-1,即圆C的圆心轨迹L的方程为y=-1.(2)由于m=n,所以M(x,y)到直线y=-1的距离与到点F(0,1)的距离相等,故点M的轨迹Q是以y=-1为准线,以点F(0,1)为焦点,顶点在原点的抛物线,=1,即p=2,所以,轨迹Q的方程是x2=4y.(3)假设存在点B满足条件.由(2)得y=x2,y=x,所以过点B的切线的斜率为k=x1,切线方程为y-y1=x1(x-x1).令x=0得y=-+y1,令y=0得x=-+x1.由于点B在x2=4y上,所以y1=,故y=-,x=x1,所以切线与两坐标轴围成的

12、三角形的面积为S=|x|y|=|-|x1|=|,所以|=,解得|x1|=2,所以x1=2.当x1=2时,y1=1,当x1=-2时,y1=1,所以点B的坐标为(2,1)或(-2,1).13.【解析】(1)设M(x,y),A(x0,0),B(0,y0),则+=9,=(x-x0,y),=(-x,y0-y).由2=,得解得代入+=9,化简得点M的轨迹方程为+y2=1.(2)由题意知k0,假设存在弦CD被直线l垂直平分,设直线CD的方程为y=-x+b,由消去y化简得(k2+4)x2-8kbx+4k2(b2-1)=0,=(-8kb)2-4(k2+4)4k2(b2-1)=-16k2(k2b2-k2-4)0,k2b2-k2-40,设C(x1,y1),D(x2,y2),CD中点P(xp,yp),则x1+x2=,xp=,yp=-xp+b=-+b=,又yp=k(-1),k(-1)=,得b=,代入k2b2-k2-40,得-(k2+4)0,解得k25,-k.当曲线E的全部弦都不能被直线l:y=k(x-1)垂直平分时,k的取值范围是k-或k.关闭Word文档返回原板块。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服