ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:104.87KB ,
资源ID:3714477      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3714477.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2020年人教A版数学理(福建用)课时作业:第六章-第七节数学归纳法.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020年人教A版数学理(福建用)课时作业:第六章-第七节数学归纳法.docx

1、 温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。 课时提升作业(四十一) 一、选择题 1.在用数学归纳法证明凸n边形内角和定理时,第一步应验证( ) (A)n=1 时成立 (B)n=2 时成立 (C)n=3 时成立 (D)n=4 时成立 2.已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明( ) (A)n=k+1 时命题成立 (B)n=k+2 时命题成立 (C)n=2k+2 时命题成立 (D)n=2(k+2)时命题成立

2、 3.(2021·河源模拟)某个命题与正整数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得( ) (A)n=6时该命题不成立 (B)n=6时该命题成立 (C)n=4时该命题不成立 (D)n=4时该命题成立 4.(2021·岳阳模拟)用数学归纳法证明不等式(n∈N*)成立,其初始值至少应取( ) (A)7 (B)8 (C)9 (D)10 5.设则Sk+1=( ) (A) (B) (C) (D) 6.(2021·南平模拟)用数学归纳法证明(n≥n0,n0∈N*),则n的

3、最小值等于( ) (A)1 (B)2 (C)3 (D)4 7.(2021·潍坊模拟)对于不等式(n∈N*),某同学的证明过程如下: (1)当n=1时,不等式成立. (2)假设当n=k(k≥1,k∈N*)时,不等式成立,即则当n=k+1时, 所以当n=k+1时,不等式也成立. 对于上述证法,( ) (A)过程全部正确 (B)n=1时验证不正确 (C)归纳假设不正确 (D)从n=k到n=k+1的推理不正确 8.(力气挑战题)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*, f(n)都能被m整除,则m的最大值为( )

4、A)18 (B)36 (C)48 (D)54 二、填空题 9.(2021·洛阳模拟)用数学归纳法证明(n∈N*,n>1)时,第一步应验证的不等式是____________. 10.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=(n∈N*)的其次步中,当n=k+1时等式左边与n=k时的等式左边的差等于__________. 11.(2021·漳州模拟)若数列{an}的通项公式,记cn=2(1-a1)·(1-a2)…(1-an),试通过计算c1,c2,c3的值,推想cn=___________. 12.已知(n∈N*),用数学归纳法证明时,f(2k+1)-

5、f(2k)等于_____________. 三、解答题 13.用数学归纳法证明: (n∈N*). 14.(力气挑战题)用数学归纳法证明不等式:(n∈N*且 n>1). 答案解析 1.【解析】选C.凸多边形至少有三边,所以应验证n=3 时成立. 2.【解析】选B.因n 是正偶数,故只需证等式对全部偶数都成立,因k的下一个偶数是k+2,故选B. 3.【解析】选C.由n=k(k∈N*)成立,可推得当n=k+1时该命题也成立.因而若n=4成立,必有n=5成立.现知n=5不成立,所以n=4确定不成立. 4.【思路点拨】用等比数列的前n项和求出不等式的左边,解不等式即可得到

6、初始值. 【解析】选B.整理得2n>128,解得n>7,所以初始值至少应取8. 5.【解析】选C.由已知得 因此 6.【解析】选C.当n=1时,左边=C11=1,右边=11=1,不等式不成立;当n=2时,左边=C21+C22=3,右边=不等式不成立,当n=3时,左边=7,右边=9,不等式成立,当n=4时,左边=15,右边=>16,不等式成立,所以n的最小值等于3. 7.【解析】选D.从n=k到n=k+1的推理时没有运用归纳假设,因此证明不正确. 8.【思路点拨】先求出当n=1,2,3时f(n)的值,由此猜想m的最大值,再用数学归纳法证明结论成立. 【解析】选B.由于f(1)=

7、36,f(2)=108,f(3)=360都能被36整除,猜想f(n)能被36整除,即m的最大值为36.当n=1时,可知猜想成立.假设当n=k(k≥1,k∈N*)时,猜想成立,即f(k)=(2k+7)·3k+9能被36整除;当n=k+1时,f(k+1)=(2k+9)·3k+1+9=(2k+7)·3k+9+36(k+5)·3k-2,因此f(k+1)也能被36整除,故所求m的最大值为36. 9.【解析】由条件知n的第一个值为2,所以第一步应验证的不等式是答案: 10.【解析】n=k+1比n=k时左边变化的项为(2k+1)+(2k+2)-(k+1)=3k+2. 答案:3k+2 11.【解析】c

8、1=2(1-a1)=2×(1-)=, c2=2(1-a1)(1-a2)=2×(1-)×(1-)=, c3=2(1-a1)(1-a2)(1-a3)=2×(1-)×(1-)×(1-)=,故由归纳推理得 答案: 12.【解析】f(2k+1)-f(2k) 答案: 13.【证明】①当n=1时,左边=,右边= 左边=右边,等式成立; ②假设n=k(k≥1,k∈N*)时,等式成立, 即 当n=k+1时,左边 所以当n=k+1时,等式成立. 由①②可得对任意n∈N*,等式成立. 14.【证明】(1)当n=2时,左边=不等式成立. (2)假设当n=k(k≥2,k∈N*)时,不等式成立, 则 则当n=k+1时, 左边= ∴当n=k+1时,不等式成立, 依据(1)(2)知,原不等式对n∈N*且n>1都成立. 关闭Word文档返回原板块。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服