ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:30.80KB ,
资源ID:3711435      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3711435.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-9理、-8文-1-.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-9理、-8文-1-.docx

1、第九节圆锥曲线的热点问题(理)第八节圆锥曲线的热点问题(文)第一课时直线与圆锥曲线的位置关系时间:45分钟分值:100分 一、选择题1直线ykx2与抛物线y28x有且只有一个公共点,则k的值为()A1 B1或3C0 D1或0解析由得k2x2(4k8)x40,若k0,则y2,若k0,若0,即6464k0,解得k1,因此直线ykx2与抛物线y28x有且只有一个公共点,则k0或1.答案D2椭圆1的离心率为e,点(1,e)是圆x2y24x4y40的一条弦的中点,则此弦所在直线的方程是()A3x2y40 B4x6y70C3x2y20 D4x6y10解析依题意得e,圆心坐标为(2,2),圆心(2,2)与点

2、的连线的斜率为,所求直线的斜率为,所以所求直线方程是y(x1)即4x6y70.答案B3经过椭圆y21的一个焦点作倾斜角为45的直线l,交椭圆于A,B两点设O为坐标原点,则等于()A3 BC或3 D解析依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y0tan45(x1),即yx1,代入椭圆方程y21并整理得3x24x0,解得x0或x,所以两个交点坐标分别为(0,1),同理,直线l经过椭圆的左焦点时,也可得.答案B4过抛物线y22px(p0)的焦点F,斜率为的直线交抛物线于A,B两点,若(1),则的值为()A5 B4C. D.解析依据题意设A(x1,y1),B(x2,y2),由得,故y1y

3、2,即.设直线AB的方程为y,联立直线与抛物线方程,消元得y2pyp20.故y1y2p,y1y2p2,2,即2.又1,故4.答案B5(2021济南模拟)若双曲线1(a0,b0)与直线yx无交点,则离心率e的取值范围是()A(1,2) B(1,2C(1,) D(1,解析由于双曲线的渐近线为yx,要使直线yx与双曲线无交点,则直线yx应在两渐近线之间,所以有,即ba,所以b23a2,c2a23a2,即c24a2,e24,所以1b0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2.则椭圆C的方程为_解析由题意得解得椭圆C的方程为1.答案18直线l:x1与椭圆x21交于A,B两

4、点,O为原点,则OAB的面积为_解析l过椭圆的顶点(1,0)和(0,2),SOAB211.答案19已知曲线1与直线xy10相交于P,Q两点,且0(O为原点),则的值为_解析设P(x1,y1),Q(x2,y2),由题意得则(ba)x22axaab0.所以x1x2,x1x2,y1y2(1x1)(1x2)1(x1x2)x1x2,依据0,得x1x2y1y20,得1(x1x2)2x1x20,因此120,化简得2,即2.答案2三、解答题10已知直线l:yx,圆O:x2y25,椭圆E:1(ab0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条

5、切线,若切线都存在斜率,求证:两切线斜率之积为定值解(1)设椭圆半焦距为c,圆心O到l的距离d,所以b.由题意得又b,a23,b22.椭圆E的方程为1.(2)证明:设点P(x0,y0),过点P的椭圆E的切线l0的方程为yy0k(xx0),联立直线l0与椭圆E的方程得把ykx(y0kx0)代入1,消去y得(32k2)x24k(y0kx0)x2(kx0y0)260,l0与椭圆E相切4k(y0kx0)24(32k2)2(kx0y0)260,整理得(2x)k22kx0y0(y3)0,设满足题意的椭圆E的两条切线的斜率分别为k1,k2,则k1k2.点P在圆O上,xy5,k1k21.两条切线斜率之积为常数

6、1.11如图,椭圆长轴的端点为A,B,O为椭圆的中心,F为椭圆的右焦点,且1,|1.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为PQM的垂心,若存在,求出直线l的方程;若不存在,请说明理由解(1)设椭圆方程为1(ab0),则c1,又(ac)(ac)a2c21.a22,b21.故椭圆的方程为y21.(2)假设存在直线l交椭圆于P,Q两点,且F恰为PQM的垂心,设P(x1,y1),Q(x2,y2),M(0,1),F(1,0),直线l的斜率k1.于是设直线l为yxm,由得3x24mx2m220,x1x2m,x1x2.x1(x21)y2(y

7、11)0.又yixim(i1,2),x1(x21)(x2m)(x1m1)0,即2x1x2(x1x2)(m1)m2m0.将代入得2(m1)m2m0,解得m或m1,经检验m符合条件故存在直线l,使点F恰为PQM的垂心,直线l的方程为yx. 1已知椭圆C:1(ab0)的离心率为,椭圆C的短轴的一个端点P到焦点的距离为2.(1)求椭圆C的方程;(2)已知直线l:ykx与椭圆C交于A,B两点,是否存在k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由解(1)设椭圆的焦半距为c,则由题设得解得故所求C的方程为x21.(2)存在k使得以线段AB为直径的圆恰好经过坐标原点O

8、.理由如下:设点A(x1,y1),B(x2,y2),将直线l的方程ykx代入x21并整理得(k24)x22kx10.(*)则x1x2,x1x2.由于以线段AB为直径的圆恰好经过坐标原点O,所以0,即x1x2y1y20.又y1y2k2x1x2k(x1x2)3,即y1y23,于是有0,解得k.经检验知:此时(*)的判别式0,适合题意即(*)的判别式0恒成立所以当k时,以线段AB为直径的圆恰好经过坐标原点O.2已知对称中心为坐标原点的椭圆C1与抛物线C2:x24y有一个相同的焦点F1,直线l:y2xm与抛物线C2只有一个公共点(1)求直线l的方程;(2)若椭圆C1经过直线l上的点P,当椭圆C1的离心

9、率取得最大值时,求椭圆C1的方程及点P的坐标解(1)由消去y,得x28x4m0,直线l与抛物线C2只有一个公共点,8244m0,解得m4.直线l的方程为y2x4.(2)抛物线C2的焦点为F1(0,1),依题意知椭圆C1的两个焦点的坐标为F1(0,1),F2(0,1)设椭圆C1的方程为1(a1),由消去y,得(5a24)x216(a21)x(a21)(16a2)0.(*)由162(a21)24(5a24)(a21)(16a2)0,得a44a20(a20且a210),解得a24.a1,a2,e.当a2时,emax,此时椭圆C1的方程为1.把a2代入方程(*),解得x.又y2x4,y1,点P的坐标为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服