ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:58.32KB ,
资源ID:3703595      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3703595.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学(北师大版)必修五教案:3.2-用数形结合法解一元二次不等式.docx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学(北师大版)必修五教案:3.2-用数形结合法解一元二次不等式.docx

1、一元二次不等式解法的启示数形结合解不等式信任同学们都熟知,在教材中有一个图表,这个图表深刻地揭示了:一元二次不等式的解集与一元二次方程的根及一元二次函数的图像三者的亲热关系。对这个图表,很多老师可能就是要求同学们熟记其中的结论而没有更多的指导,因此同学们也就机械地进行硬背这个图表的结论。然而没有理解又怎么能记得牢固呢?也很少同学会从这种利用二次方程的根及二次函数的图像来解一元二次不等式的方法中得到什么启示。xyOx1x2图(1)我认为在这个图表中,我们的重点应当是看二次函数的图像:在图(1)中函数的图像被x轴分成两部分:在x轴上方即对应着或,在x轴下方即对应着;因此由图像直观地有一元二次不等式

2、()的解为或,而不等式()的解为。在另两个图中状况类似。假如我们把x轴看成函数,那么就可以从上面这种一元二次不等式的解法得到启示,并把这种方法推广用到解其它的不等式中去。即一般地有:在同始终角坐标系中,画出两个函数和的图像,则两图像的交点的x坐标就是方程的解,其中有几个交点就有几个解,没有交点就没有解;在某些区间内均有的图像在的上(下)方,那么这些区间就是不等式(或)的解。下面我们来看几个例子:xyO236图(2)例1、解不等式。解:易知方程的解为,又函数和函数的图像草图如图(2)则直观地有原不等式的解为。评注:这里我们只需解方程并画函数的图像草图即可直观地得出不等式的解。按常规的解法需要把原

3、不等式化为标准式其中,这是常规方法解一元二次不等式的关键步骤。而很多同学简洁在这关键步骤中出两方面的错误:一是没有留意到要化二次项系数大于零;二是在化二次项系数大于零的过程中没有留意到不等式要转变不等号,或是在最终写出不等式的解时仍套用原不等号时的不等式的状况。xyO图(3)4/33例2、解不等式。解:易知方程无解。又函数和函数的图像草图如图(3)则直观地有原不等式的解为。评注:同样这里我们只需解方程并画函数的图像草图即可直观地得出不等式的解。而不用像常规方法一样先去解被开方数大于零的不等式组,(这一步骤往往是同学们简洁遗忘的)再两边平方(很多同学往往也不留意不等式两边能够平方的条件)把无理式

4、化成整式,最终还要取不等式的交集。xyO236图(4)-16例3、解不等式解:易知方程的解为,。又函数和函数的图像草图如图(4)则直观地有不等式的解为或或。例4、解不等式。xyO图(5)1/25解:简洁知不等式等价于xya1a=10a1图(6)O2a/(1-a2),方程的解为,而方程无解;又函数,的图像草图如图(5)则直观地有原不等式的解为。评注:例3、例4中与常规方法比较均避开了解繁琐的不等式组。例5、解不等式。解:简洁知方程的解为,(当时仅有一解),又函数,的图像草图如图(6)则直观地有原不等式的解为当时是,当时是。评注:虽然避开不了对参数a 争辩,但利用函数的图像使争辩格外直观,且避开了解繁琐的不等式组。数形结合是数学的重要思想、方法之一,这里利用函数的图像解不等式就是数形结合的一种具体运用。最终指出利用这种方法解不等式要对基本函数的图像比较娴熟,包括基本函数图像的平移、伸缩、对称、翻转等变换。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服