ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:83.56KB ,
资源ID:3700583      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3700583.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022高考(新课标)数学(理)大一轮复习试题:第四章-平面向量、数系的扩充与复数的引入4-1b.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022高考(新课标)数学(理)大一轮复习试题:第四章-平面向量、数系的扩充与复数的引入4-1b.docx

1、限时规范特训A级基础达标1. 2021黄山模拟下列命题中是真命题的是()对任意两向量a,b,ab与ba是相反向量;在ABC中,0在四边形ABCD中,()()0;在ABC中,.A. B. C. D. 解析:真命题由于(ab)(ba)a(b)b(a)a(a)b(b)(aa)(bb)0,所以ab与ba是相反向量真命题由于0,所以命题成立假命题由于,所以()()0,所以该命题不成立假命题由于,所以该命题不成立故选A.答案:A2. 设e1,e2是两个不共线的向量,且ae1e2与be2e1共线,则实数()A. 1 B. 3C. D. 解析:ae1e2与be2e1共线,存在实数t,使得bta,即e2e1t(

2、e1e2),e2e1te1te2,t1,t, 即,故选D.答案:D3. 2021济南模拟如图,在ABC中,|,延长CB到D,使,若,则的值是()A. 1 B. 2C. 3 D. 4解析:由题意可知,B是DC的中点,故(),即2,所以2,1,则3.答案:C4. 在平行四边形ABCD中,AC与BD相交于点O,E是线段OD的中点,AE的延长线与CD交于点F,若a,b,则等于()A. ab B. abC. ab D. ab解析:如图,由题意知,ABEFDE,DEBE13DFAB,abab.答案:B5. 2021江门市模拟若四边形ABCD满足0,()0,则该四边形确定是()A. 直角梯形 B. 菱形C.

3、 矩形 D. 正方形解析:由0知,即ABCD,ABCD.四边形ABCD是平行四边形又()0,0,即ACBD,因此四边形ABCD是菱形,故选B.答案:B6. 2022福建高考设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A. B. 2C. 3 D. 4解析:()()224.故选D.答案:D7. 2021四川高考如图,在平行四边形ABCD中,对角线AC与BD交于点O,则_.解析:由于O为AC的中点,所以2,即2.答案:28. 2021泉州四校联考设e1,e2是不共线的向量,若e1e2,2e1e2,3e1e2,且A,B,D三点共线,则的值为_解析:2e1e

4、2,3e1e2,(3e1e2)(2e1e2)e12e2,若A,B,D三点共线,则与共线,存在R使得,即e1e2(e12e2),由e1,e2是不共线的向量,得解得2.答案:29. 2021广州调研在平行四边形ABCD中,a,b,3,M为BC的中点,则_(用a,b表示)解析:如图所示,四边形ABCD是平行四边形,又3,即A,N,C三点共线,且,则b(ab)ab.答案:ab10. 如图所示,四边形OADB是以a,b为邻边的平行四边形,又,试用a,b表示,.解:由题意,可知()(ab)所以b(ab)ab.又,所以()(ab)所以(ab)(ab)ab.11. 在ABC中,E、F分别为AC、AB的中点,B

5、E与CF相交于G点,设a,b,试用a,b表示.解:E、F分别是AC、AB的中点,G是ABC的重心.()ab.12. 设a、b是不共线的两个非零向量,(1)若O2ab,O3ab,Oa3b,求证:A、B、C三点共线;(2)若8akb与ka2b共线,求实数k的值解:(1)A(3ab)(2ab)a2b,而B(a3b)(3ab)2a4b2,A与B共线,且有公共端点B.A、B、C三点共线(2)8akb与ka2b共线,存在实数,使得(8akb)(ka2b)(8k)a(k2)b0.a与b不共线,8222.k24.B级知能提升1. 在四边形ABCD中,a2b,4ab,5a3b,则四边形ABCD的外形是()A.

6、矩形 B. 平行四边形C. 梯形 D. 以上都不对解析:由已知8a2b2(4ab)2.,又与不相等,四边形ABCD是梯形答案:C2. 2021四川模拟设a,b都是非零向量,下列四个条件中,使成立的充分条件是()A. |a|b|且ab B. abC. ab D. a2b解析:由于表示与a同向的单位向量,所以a与b必需方向相同才能满足.故选D.答案:D3. 2021合肥质检在梯形ABCD中,ABCD,AB2CD,M、N分别为CD、BC的中点,若,则()A. B. C. D. 解析:由于22,所以,所以.答案:D4. 设点O在ABC内部,且有40,求ABC与OBC的面积之比解:取BC的中点D,连接OD,则2,40,4()2,.O、A、D三点共线,且|2|,O是中线AD上靠近A点的一个三等分点, SABCSOBC32.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服