ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:28.34KB ,
资源ID:3699702      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3699702.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2021届高考数学(文科-通用)二轮复习突破练-高考压轴大题突破练(四)-Word版含答案.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021届高考数学(文科-通用)二轮复习突破练-高考压轴大题突破练(四)-Word版含答案.docx

1、 高考压轴大题突破练(四) ——函数与导数(2) (推举时间:70分钟) 1.已知函数f(x)=ln x-,a∈R. (1)已知曲线y=f(x)在点(1,f(1))处的切线与直线8x-y=0垂直,求函数f(x)的极值; (2)若函数f(x)在(0,+∞)上为增函数,求a的取值范围. 解 (1)f′(x)=- ==, 故曲线y=f(x)在点(1,f(1))处的切线斜率k=f′(1)==1-. 由于该切线与直线8x-y=0垂直, 所以1-=-, 解得a=. 所以f(x)=ln x-, f′(x)==. 令f′(x)=0,即=0, 解得x=2或x=. 当x∈(0,)

2、时,f′(x)>0,函数f(x)单调递增; 当x∈(,2)时,f′(x)<0,函数f(x)单调递减; 当x∈(2,+∞)时,f′(x)>0,函数f(x)单调递增. 所以f(x)的极大值为f()=ln-=-ln 2,微小值为f(2)=ln 2-=-+ln 2. (2)f′(x)=, 由于f(x)在(0,+∞)上为增函数, 所以f′(x)≥0在(0,+∞)上恒成立, 即x2+(2-2a)x+1≥0在(0,+∞)上恒成立. 当x∈(0,+∞)时, 由x2+(2-2a)x+1≥0,得2a-2≤x+, 而x>0时,x+≥2=2(当且仅当x=,即x=1时取得等号), 所以2a-2≤2

3、解得a≤2,即a的取值范围是(-∞,2]. 2.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,在x=0处的切线与直线3x+y=0平行. (1)求f(x)的解析式; (2)已知点A(2,m),求过点A的曲线y=f(x)的切线条数. 解 (1)f′(x)=3ax2+2bx+c, 由题意可得解得 所以f(x)=x3-3x. (2)设切点为(t,t3-3t),由(1)知f′(x)=3x2-3,所以切线斜率k=3t2-3, 切线方程为y-(t3-3t)=(3t2-3)(x-t). 又切线过点A(2,m),代入得m-(t3-3t)=(3t2-3)(2-t),解得m=-2t

4、3+6t2-6. 设g(t)=-2t3+6t2-6,令g′(t)=0, 即-6t2+12t=0,解得t=0或t=2. 当t变化时,g′(t)与g(t)的变化状况如下表: t (-∞,0) 0 (0,2) 2 (2,+∞) g′(t) - 0 + 0 - g(t) 微小值 极大值 所以g(t)的微小值为g(0)=-6,极大值为g(2)=2. 作出函数草图(图略),由图可知: ①当m>2或m<-6时,方程m=-2t3+6t2-6只有一解,即过点A只有一条切线; ②当m=2或m=-6时,方程m=-2t3+6t2-6恰有两解,即过点A有两条切线;

5、 ③当-60得≤x<; 令f′(x)<0,得

6、若不等式f(x)≥m+x对全部的a∈[0,],x∈(1,e2]都成立,则aln x≥m+x对全部的a∈[0,],x∈(1,e2]都成立,即m≤aln x-x,对全部的a∈[0,],x∈(1,e2]都成立, 令h(a)=aln x-x,则h(a)为一次函数,m≤h(a)min. ∵x∈(1,e2],∴ln x>0, ∴h(a)在[0,]上单调递增,∴h(a)min=h(0)=-x, ∴m≤-x对全部的x∈(1,e2]都成立. ∵1

7、+2)x. (1)当a=1时,求函数f(x)的微小值; (2)当a=-1时,过坐标原点O作曲线y=f(x)的切线,设切点为P(m,n),求实数m的值; (3)设定义在D上的函数y=g(x)在点Q(x0,y0)处的切线方程为l:y=h(x),当x≠x0时,若>0在D内恒成立,则称点Q为函数y=g(x)的“好点”.当a=8时,试问函数y=f(x)是否存在“好点”,若存在,恳求出“好点”的横坐标;若不存在,请说明理由. 解 (1)当a=1时,f(x)=ln x+x2-3x,f′(x)=2x-3+==(x>0), 当00,f(x)单调递增; 当

8、0,f(x)单调递减; 当x>1时,f′(x)>0,f(x)单调递增. 所以当x=1时,f(x)取到微小值-2. (2)当a=-1时,f(x)=-ln x+x2-x, f′(x)=2x-1-(x>0), 所以切线的斜率k=2m-1-==, 整理得m2+ln m-1=0, 明显m=1是这个方程的解, 又y=x2+ln x-1在(0,+∞)上是增函数, 所以方程x2+ln x-1=0有唯一实数解,故m=1. (3)当a=8时,f(x)=8ln x+x2-10x, f′(x)=2x-10+, 函数y=f(x)在其图象上一点Q(x0,f(x0))处的切线方程h(x)=(2x0+

9、-10)(x-x0)+x-10x0+8ln x0. 设F(x)=f(x)-h(x),则F(x0)=0, F′(x)=f′(x)-h′(x)=(2x+-10)-(2x0+-10) =, ①若02,F(x)在(,x0)上单调递减, 所以当x∈(,x0)时,F(x)>F(x0)=0, 此时<0,不合题意, 所以y=f(x)在(0,+∞)上不存在“好点”; ③若x0=2,F′(x)=≥0, 即F(x)在

10、0,+∞)上是增函数, 当x>x0时,F(x)>F(x0)=0, 当x0恒成立, 所以点(2,-16+8ln 2)为函数y=f(x)的“好点”. 故函数y=f(x)存在“好点”,“好点”的横坐标为2. 5.已知函数f(x)=ln x-ax+1. (1)若函数f(x)在点A(1,f(1))处的切线l与直线4x+3y-3=0垂直,求a的值; (2)若f(x)≤0恒成立,求实数a的取值范围; (3)证明:ln(n+1)>++…+(n∈N*). (1)解 函数f(x)的定义域为(0,+∞),f′(x)=-a. 所以f(1)=ln 1-a+

11、1=1-a,f′(1)=1-a. 故切线l的方程为y-(1-a)=(1-a)(x-1), 即y=(1-a)x. 由于切线l与直线4x+3y-3=0垂直, 所以1-a=,解得a=. (2)解 若a≤0,则f′(x)=-a>0,f(x)在(0,+∞)上是单调递增函数. 而f(1)=1-a>0,f(x)≤0不恒成立,故a>0. 考虑a>0,则当x∈(0,)时,f′(x)=-a>0; 当x∈(,+∞)时,f′(x)=-a<0. 所以f(x)在(0,)上是单调递增函数, 在(,+∞)上是单调递减函数. 所以f(x)的最大值为f()=-ln a. 要使f(x)≤0恒成立,只须-ln a≤0即可. 由-ln a≤0,解得a≥1,即a的取值范围为[1,+∞). (3)证明 由(2),知当a=1时,f(x)≤0在(0,+∞)上恒成立,且f(x)在(0,1)上是增函数,f(1)=0,所以ln x++…+(n∈N*).

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服