ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:604.39KB ,
资源ID:3680949      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3680949.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(初中数学基本几何图形.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初中数学基本几何图形.docx

1、初中数学基本几何图形 这篇帖子是关于几何基本图形的。每一个几何压轴题,几乎都是由几个基本图形构成的,所以如果能把这些图形用熟,做几何题应该不成问题。 1、 正方形与等腰直角三角形 正方形ABCD,EF为过正方形点B的直线且AE⊥EF,CF⊥EF,则有△AEB≌△BFC。 将上图进行转换,则该基本图形存在于等腰三角形中,可利用此图证明勾股定理: 令AD=BE=a,DB=CE=b,AB=BC=c,S△ABC = 12 c2 = 12 (a+b)2-ab ;化简得到:c2=a2+b2 2、 梯形中位线 梯形ABCD中,AD∥BC,E、F分别为AB、DC中点,则有EF= 12

2、AD+BC) 结合1、2有一道经典题目,在此奉上。 △ABC,分别以AB、AC为边向外做正方形ABFG、ACDE,连接FD,取FD中点H,作HI⊥BC,证明:HI=12 BC 提示:先证明BC等于梯形上下底边之和 【变形题1】 如图1,以△ABC的边AB、AC为边向内作正方形ABFG和正方形ACDE,M是DF的中点,N是BC的中点,连接MN.探究线段MN与BC之间的关系,并加以证明. 说明:如果你经过反复探索没有解决问题,可以从下面①、②中选取一种情况完成你的证明,选取①比原题少得6分,选取②比原题少得8分. ①如图2,将正方形ACDE绕点A旋转,使点C、E分别落在AG

3、AB上; ②如图3,将正方形ACDE绕点A旋转,使点B、A、C在一条直线. 答案: 解:BC⊥MN. 证明:连接CM,然后延长CM至H,使CM=MH,连接FH、BH、CM、BM,HG、CG,延长CD,与BF相交于I, ∵MF=MD,CM=HM,∠CMD=∠HMF, ∴△CMD≌△HMF, ∴AC=HF=CD, ∴∠HFG=180°-∠GHF-∠HGF, ∴∠HGF=∠DCM,∠GHF=∠IGC, ∠BIC=∠IGC+∠DCM, ∵∠BAC=360°-∠ABI-∠ACI-∠BIC=180°-∠BIC=180°-∠IGC-∠DCM=180°-∠GHF-∠HGF=∠HFB

4、 ∴△ABC≌△FBH, ∵四边形ABIC中∠ABI=∠ACI=90°, ∴∠HBF=∠ABC, ∵∠CBH=∠HBF+∠CBF=∠ABC+∠CBF=90°, ∴BC⊥BH, ∵N是BC中点,M是HC中点, ∴MN∥BH, ∴BC⊥MN. 分析: 延长CM至H,使CM=MH,连接FH、BH、CM、BM,延长CD,与BF相交于I,根据MF=MD,CM=HM,∠CMD=∠HMF,可以证明∠BAC=∠HFB,即可证明△ABC≌△FBH,于是证明得∠CBH=∠HBF+∠CBF=∠ABC+∠CBF=90°,故知BC⊥BH,又因为N是BC中点,M是HC中点,可得MN‖BH,于是证明出

5、BC⊥MN. 【变形题2】 如图(1),在Rt△ABC, ∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M。 (1)求证:△ABD≌△FBC; (2)如图(2),已知AD=6,求四边形AFDC的面积; (3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2 +b2。在任意△ABC中,c2=a2 +b2+k。就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可)。 【变形题3】 已知:如图所示,从Rt△ABC的两直角边AB,AC向外作正方形ABFG及ACDE,CF,BD

6、分别交AB,AC于P,Q.求证:AP=AQ . 3、 角平分线出等腰。 AD平分∠BAC,且BD∥AC,则BA=BD,此图形常出现于菱形中,若有AB=AC,则连接CD后有菱形BACD。 补充一句,上一图可用于证明角分线定理。 4、 双垂图。 5、一线三等角相似 AB=AC,∠ADE=∠B,则△ABD∽△DCE 6、 正方形中两垂直线段。 正方形ABCD中,AF⊥DE,则有AF=DE;平移AF、DE进行推广,在正方形ABCD中,MN⊥PQ,则有MN=PQ 7、 直角三角形斜边中线。 AB⊥AC,D为BC中点,则AD=BD=CD,该图可从矩形中挖出,也

7、可从圆中找到图形。 8、 直角三角形共圆 9、 等腰三角形线段关系 11、常见旋转型2。 12、常见旋转型3 13、四边形共圆 四边形共圆2 一道经典例题 一线三角模型的特殊形式。 补充:一线三角相等模型中,∠B=∠C=∠ADE=n°,则∠ADB+∠EDC=180-n°, ∠DEC+∠EDC=180-n°所以, ∠ADB=∠DEC,又因为∠B=∠C,所以△ADB相似于△DEC,所以AD/DE=BD/CE。当点D为中点时,BD=DC,则 AD/DE=DC/CE,又因为 ∠C=∠ADE,所以 △ADE相似于△DEC。证毕 双等边三角形(正方形)模型 上一楼图形的性质 性质1:通过证全等可知左图中,BD=AE,右图中,BE=DF 性质2:证全等后,做双高可知左图中,CF平分∠BFE,右图中,CH平分∠BHF 性质3:左图中,BD和AE相交所构成的其中的一个角为60°,右图中,BE和DF垂直,当扩展到正n边形时,两线相交所构成的其中的一个角等于这个正n边形的各个内角。 北京中考经典好题。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服