ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:1.03MB ,
资源ID:3260110      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3260110.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022年概率论与数理统计期末试卷及答案2套.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年概率论与数理统计期末试卷及答案2套.doc

1、-装 订 线- 试 卷2021-2022 学年第一学期期末考试 概率论与数理统计 (A卷)(本次考试允许使用计算器)班级 学号 姓名 总分 题 目一二三(1)三(2)三(3)三(4)三(5)三(6)三(7)三(8)得 分阅卷人 一、单项选择题(共5题,每题2分,共10分).1. 设事件A与B的概率均大于零小于1,且A与B为对立事件,则下列不成立的是( ) (A) A、B互不相容 (B) 与互不相容 (C) A、B不独立 (D) A、B独立2. 以下哪个函数可以成为某个随机变量的分布函数( ) (A) (B) (C) (D) 3. 设与相互独立,且有相同的分布律:,则下列正确的是( )(A) (

2、B) (C) (D) 4. 设总体为的样本,则下面结果正确的是( )(A) ; (B) ;(C) ; (D) .5. 设是来自正态总体的样本,若统计量服从分布,则常数C=( ) (A) (B) (C) (D) 二、填空题(每空2分,共10分)1. 设,则 .2. 向单位圆内随机投下3点,则这3点恰有2点落在第一象限中的概率为 .3. 设随机变量且与相互独立, ,则 4.已知,则 , . 三、计算题(共8题,每题各10分,共80分)1 (10分)某工厂某车间有两台机器同时生产日光灯,已知第二台机器的产量是第一台机器的3倍,而第一、二台机器的次品率分别为0.004,0.003。现从两台机器生产的日

3、光灯中任取一只,(1)求这只日光灯是次品的概率。(2)若已知所取的这只日光灯是次品,求它是由第一台机器生产的概率。2. (10分)设随机变量X的概率密度为: (1) 确定k的值; (2) 计算数学期望。3. (10分)设二维随机变量(X,Y)的联合概率密度为,(1) 求X,Y的边缘概率密度;(2) 判断X,Y是否独立;(3) 求概率。4. (10分)设100台车床独立地工作着,每台车床的实际工作时间占全部工作时间的80%,请使用中心极限定理,估计任一时刻有70到90台车床工作的概率 (结果用表示)。5(10分)设总体的概率密度函数为为总体的一个样本,试求未知参数的(1)矩估计量; (2)最大似

4、然估计量。6(10分)设某种油漆的干燥时间 (以小时计)服从正态分布,现随机地抽取9个样品进行检测,测得干燥时间的均值(小时), 样本的均方差。未知的情况下,求的取置信水平为95%的双侧置信区间(结果精确到两位小数)。7. (10分)某产品的一项质量指标,现从一批产品中随机地抽取6件,测得样本的方差,问根据这一数据,能否推断该产品的方差较以往有显著的变化? 即检验假设,.8(10分)某商场自开办有奖销售以来的23期中奖号码中,各号码出现的频数如下所示号码0 1 2 3 4 5 6 7 8 9合计频数42 36 37 33 54 55 36 43 45 49430试问在出现这样结果的情况下,各号

5、码出现的可能性是否相同?-装 订 线- 试 卷2021-2022 学年第一学期期末考试 概率论与数理统计 (A卷)(本次考试允许使用计算器)班级 学号 姓名 总分 题 目一二三(1)三(2)三(3)三(4)三(5)三(6)三(7)三(8)得 分阅卷人 一、单项选择题(共5题,每题2分,共10分).6. 设事件A与B的概率均大于零小于1,且A与B为对立事件,则下列不成立的是(D ) (A) A、B互不相容 (B) 与互不相容 (C) A、B不独立 (D) A、B独立7. 以下哪个函数可以成为某个随机变量的分布函数( B ) (A) (B) (C) (D) 8. 设与相互独立,且有相同的分布律:,

6、则下列正确的是( C )(A) (B) (C) (D) 9. 设总体为的样本,则下面结果正确的是(D )(A) ; (B) ;(C) ; (D) .10. 设是来自正态总体的样本,若统计量服从分布,则常数C=( B ) (A) (B) (C) (D) 二、填空题(每空2分,共10分)1. 设,则.2. 向单位圆内随机投下3点,则这3点恰有2点落在第一象限中的概率为.3. 设随机变量且与相互独立, ,则.4.已知,则, . 三、计算题(共8题,每题各10分,共80分)2 (10分)某工厂某车间有两台机器同时生产日光灯,已知第二台机器的产量是第一台机器的3倍,而第一、二台机器的次品率分别为0.00

7、4,0.003。现从两台机器生产的日光灯中任取一只,(1)求这只日光灯是次品的概率。(2)若已知所取的这只日光灯是次品,求它是由第一台机器生产的概率。解:设A表示任取一只日光灯是次品, 表示取到产品是由第i个机器生产的,则所求概率分别为 (1); -(5分) (2). -(5分)2. (10分)设随机变量X的分布律如下: X-21230.10.40.30.2 (1) 计算数学期望; (2) 计算方差; (3) 求的分布律.解:(1) . -(3分) (2) . -(3分) (3) 的分布律 -(4分)Z0380.40.40.23. (10分)设二维随机变量(X,Y)的联合概率密度为,(4) 求

8、未知数k;(5) 求X,Y的边缘概率密度,并判断X,Y是否独立;(6) 求概率。解: (1) 由,解得 -(2分)(2) -(2分) -(2分) 显然故 X,Y不独立。 -(2分)(3) -(2分)4. (10分)设100台车床独立地工作着,每台车床的实际工作时间占全部工作时间的80%,请使用中心极限定理,求任一时刻有70到90台车床工作的概率 (结果用表示)。解:设X为同时工作的车床台数,则 -(3分)由中心极限定理,近似地有 -(3分)则 -(2分) -(2分)5(10分)设总体的概率密度函数为为总体的一个样本,试求未知参数的(1)矩估计量,(2)最大似然估计量。解:(1) ,-(5分)(

9、2)似然函数 -(2分) 取对数 -(2分)令,解得最大似然估计量 -(1分)6(10分)设某种油漆的干燥时间 (以小时计)服从正态分布,现随机地抽取9个样品进行检测,测得干燥时间的均值(小时), 样本的均方差。未知的情况下,求的取置信水平为95%的双侧置信区间(结果精确到两位小数)。解:的取置信水平为95%的置信区间为 -(5分)把,n=9, 代入计算得 -(3分) (5.54, 6.46 ) -(2分)7. (10分)某产品的一项质量指标,现从一批产品中随机地抽取6件,测得样本的方差,问根据这一数据能否推断该产品的方差较以往有显著的变化?即检验假设,.解:由题意知,需检验假设, 拒绝域为:

10、或 -(4分)而落入拒绝域, -(4分)故拒绝,推断该产品的方差较以往有显著的变化。 -(2分)8(10分)某商场自开办有奖销售以来的23期中奖号码中,各号码出现的频数如下所示号码0 1 2 3 4 5 6 7 8 9合计频数42 36 37 33 54 55 36 43 45 49430试问在出现这样结果的情况下,各号码出现的可能性是否相同?解: -(3分)检验统计量 -(3分) 拒绝域 -(2分)接受,各号码出现的可能性相同。 -(2分) 试 卷2021-2022 学年第一学期期末考试 概率论与数理统计 (A卷)(本次考试允许使用计算器)班级 学号 姓名 总分 题 目一、二三(1)、(2)

11、、(3)、(4)三(5)、(6)、(7)、(8)得 分阅卷人-装 订 线-, , ,一、单项选择题(共4题,每题2分,共8分)1.设为任意两个事件,且,则下列选项必然成立的是( )。A. B. C. D. 2.设随机变量的分布律为-1010.250.50.25 且满足,则( )。A.0 B.0.5 C.0.75 D.13.设随机变量和独立同分布,记,则与之间必有( )。 A.不独立 B.相关系数不为零 C.独立 D.相关系数为零4.设总体服从,为的样本,则的无偏估计为 ( )。A. B.C. D.二、填空题(共6题,每题2分,共12分)1.设,,则_。2.设服从,且,则_。3.设随机变量和的相

12、关系数为,且,则_。4.设随机变量独立同分布,且,则_。5.设是总体的样本,是样本均值,则当至少为_时有。6.设随机变量服从,是来自的样本,令,则服从分布_。 三、计算题(共8题,每题10分,共80分)1.一批产品中90%是合格品。检验时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02。求(1)一个产品经检查后被认为是合格品的概率;(2)一个产品经检查后被认为是合格品,求该产品确是合格品的概率。2.设随机变量的分布律为-1230.250.50.25求(1)的分布函数;(2) 及。3.设服从,求的概率密度。4.设二维随机变量的联合概率密度为 求(1)常数; (

13、2)判断及是否独立; (3)求概率。5.一个复杂系统由个相互独立的元件组成,每个元件损坏的概率为0.1,已知至少有80%的元件正常工作才能使系统正常运行,求至少为多大时才能保证系统正常运行的概率不低于0.95。6.设总体的概率密度为,其中为未知参数,是来自的样本,试求未知参数的(1)矩估计量;(2)最大似然估计量。7.随机地取某种炮弹9发做实验,测得炮口速度的样本标准差S=11m/s.设炮口速度服从,求方差的置信水平为95%的双侧置信区间。8.设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考

14、试全体考生的平均成绩为70分?-装 订 线- 试 卷2021-2022 学年第一学期期末考试 概率论与数理统计 (A卷)(本次考试允许使用计算器)班级 学号 姓名 总分 题 目一、二三(1)、(2)、(3)、(4)三(5)、(6)、(7)、(8)得 分阅卷人-装 订 线-, , ,一、单项选择题(共4题,每题2分,共8分)1. 设A、B为任意两个事件,且,,则下列选项必然成立的是( B )。A. B. C. D. 2.设随机变量的分布律为-1010.250.50.25 且满足,则( A )。A.0 B.0.5 C.0.75 D.13.设随机变量和独立同部分,记,则与之间( D )。 A.不独立

15、 B.相关系数不为零 C.独立 D.相关系数为零4.设总体为的样本,则的无偏估计为 ( B )。A. B.C. D.二、填空题(共6题,每题2分,共12分)1.设,,则_0.2_。2. 设服从,且,则。3. 设随机变量和的相关系数为,且则。4.设随机变量独立同分布,且,则_。5.设是总体的样本,是样本均值,则当至少为_40_时有。6.设随机变量服从正态分布,是来自的样本,令,则服从分布_。三、计算题(共8题,每题10分,共80分)1. 一批产品中90%是合格品。检验时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02。求(1)一个产品经检查后被认为是合格品的概

16、率;(2)一个产品经检查后被认为是合格品,求该产品确是合格品的概率。解:设A表示产品经检查后被认为是合格品,B表示取到的是合格品,则所求概率分别为(1) (5分)(2) 。(5分)2.设随机变量的分布律为-1230.250.50.25求(1)的分布函数;(2) 及。解:(1)当时,; 当时,; 当时, 当,。故X的分布函数为 (6分)(2) =; (2分) 。 (2分)3.设服从,求的概率密度。 解:因,故在取值,从而时,;(2分)若,注意到服从,故Y的分布函数为 ,(4分) 故时, 。(4分)于是的概率密度为 。 4.设二维随机变量的联合概率密度为求(1)常数C; (2)判断X及Y是否独立;

17、 (3)求概率。解:(1) 由概率密度的性质,有 ,所以。(2分) (2) (2分) (2分) 因为,所以X与Y不相互独立。(2分) (3) = 。(2分) 5.一个复杂系统由个相互独立的元件组成,每个元件损坏的概率为0.1,已知至少有80%的元件正常工作才能使系统正常运行,请使用中心极限定理,求至少为多大时才能保证系统正常运行的概率不低于0.95。解:设为正常工作的元件数,则X服从,(3分)由中心极限定理,近似地有 (3分)由题意 (2分)由于 ,故,即至少为25。(2分)6.设总体的概率密度为,其中为未知参数,是来自总体的样本,试求未知参数的(1)矩估计量,(2)最大似然估计量。解:(1)

18、 所以的矩估计量 (5分) (2) 似然函数(2分) 取对数(2分) 令解得最大似然估计量。(1分)7.随机地取某种炮弹9发做实验,测得炮口速度的样本标准差S=11m/s.设炮口速度服从,求方差的置信水平为95%的双侧置信区间。解:的置信水平为95%的置信区间为(5分) 把,(3分)代入计算得(55.21,444.04)(2分)8.设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?解:由题意知,需检验假设 拒绝域为:(4分) 由,算得 未落入拒绝域,(4分) 故接受,认为这次考试全体考生的平均成绩为70分。 (2分)第 24 页 共 24 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服