ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:484.50KB ,
资源ID:3137697      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3137697.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(线性代数在量子力学中的应用实例.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

线性代数在量子力学中的应用实例.doc

1、线性代数在量子力学中的应用实例作者:寿立夫摘要:利用泡利自旋矩阵可以简化电子自旋这一双态系统,并且具备相当的普遍意义,可以适用于一般的量子系统;我们试图在N态系统中寻找一组基础态使之标准正交,为此我们仿照实对称矩阵的证明,证明含复数的哈密顿矩阵总是可以被相似对角化的,并且可以通过Gram-Schmidt法则将其化为标准正交向量组。在此基础上,我们研究了具有四个基础态的氢的超精细分裂问题并由所得结果计算出氢的两个超精细态之间的“21cm谱线“。关键词:泡利矩阵 ;N态系统; 氢的超精细分裂;线性代数引言自海森堡创立矩阵力学以来,随着叠加原理在量子力学中的广泛使用,使得线性代数成为了描述和研究量子

2、系统的强有力工具,在初步学习了相关线性代数知识后,我们已经有了足够的知识储备去探究量子世界的奥妙,在此选取几个例子粗浅地展示下线性代数在量子力学中的一些简单应用。1 泡利自旋矩阵1.1 背景知识1.1.1 振幅与态矢量由于量子力学本身的特殊性,所以它有一套独特的符号体系。下面引述维基百科的概念:1在量子力学里,一个量子系统的量子态可以抽象地用态矢量来表示。态矢量存在于内积空间。定义内积空间为增添了一个额外的内积结构的矢量空间。态矢量满足矢量空间所有的公理。态矢量是一种特殊的矢量,它也允许内积的运算。态矢量的范度是1,是一个单位矢量。标记量子态的态矢量为。每一个内积空间都有单范正交基。态矢量是单

3、范正交基的所有基矢量的线性组合:;其中,是单范正交基的基矢量,是单范正交基的基数, 是的分量,是投射于基矢量的分量,也是处于的概率幅。1维基百科“态矢量词条”. 换一种方法表达:。在狄拉克标记方法里,态矢量称为右矢。对应的左矢为,是右矢的厄米共轭,用方程表达为;其中,象征为取厄米共轭。设定两个态矢量,。定义,的内积为。结果是一个复数。1.1.2 哈密顿矩阵现在我们令表示时刻t处在基础态i的振幅,则在只考虑态矢随时间变化的简单情况下,我们可以得到以下齐次线性微分方程组:i= 因为量子系统的幺正性,所以.1.2 泡利矩阵1.2.1磁场中电子自旋的自旋方程i=i=通过观察我们可以写出如下泡利自旋矩阵

4、:= = 1=将哈密顿矩阵改写为:若将视为向量,即则可以得到:与经典物理中的磁矩为的磁体处在磁场为B中的能量的经典公式:有相似的形式,这是因为经典力学是量子力学的近似的缘故。1.2.2 泡利矩阵的性质= 12 N态系统2.1 N态系统的能级 因为为齐次线性微分方程组,设,现在我们对其施加一个线性变换,则:为使方程组无耦合项,则,哈密顿矩阵可以相似对角化,则=,为H的特征值,则被化为如下形式:,可见为该N态系统的n个能级所具有的能量.2.2 哈密顿矩阵的相似对角化我们知道哈密顿矩阵具有性质,由于哈密顿矩阵可以为复数,事实上对于实对称矩阵而言,所以我们猜测哈密顿矩阵也可以被相似对角化;现在我们根据

5、这一性质仿造实对称矩阵相似对角化的证明来证明哈密顿矩阵也可以被相似对角化;2.2.1 属于不同特征值的特征向量是正交的 2.2.2 基于数学归纳法的证明2.3 基础态的选择用Gram-Schmidt法则将H的特征向量组化为标准正交向量组,选其为基础态,显然,这组基础态满足正交化条件:3 氢的超精细分裂3.1 由两个自旋1/2粒子组成的系统的基础态 由基础的物理知识可知,氢原子包含一个位于质子附近的电子,电子具有“朝上”或者“朝下”的自旋,质子的自旋也可以“朝上”或者“朝下”。因此,原子的每一种动力学状态都存在这4种可能的自旋态,这四个状态是由于电子和质子磁矩之间的相互作用引起,这些能级的能量移

6、动大约只有eV远小于基态与激发态之间的能级差,所以我们可以用上文的方程组来描述这些量子态;由于基础态或者说基的选择有无穷多种,我们选取物理意义最明显的一组:电子自旋质子自旋态1:+1/2+1/2态2:+1/2-1/2态3:-1/2+1/2态4:-1/2-1/23.2 氢原子基态的哈密顿但却是有效的。我们假设有矢量算符,当它作用这四个基础态之一时,只相当于作用在电子的自旋上,同理有算符只作用于质子的自旋上,有如下表格: 从泡利自旋矩阵中获得的经验,我们可以知道哈密顿矩阵应等于:H=A其中A= ()因为现在有四个基础态,所以H为四维矩阵,所以和泡利矩阵并不完全一致,但我们同样可以分别从这两个算符作

7、用于基础态之上的效果得出哈密顿矩阵,为节省篇幅省略中间的繁琐的计算,直接写出经过这些计算得到的哈密顿矩阵:3.3能级由N态系统的结论,我们只需解出哈密顿矩阵的特征值即可算出它各能级对应的能量值,解得, 所以能级差为4A,这就是说当原子从态1跃迁到态4时,会吸收频率为 的光子,反之,发射时也会放出这样频率的光子,根据理论,这个频率的光子的周期为= ,其实验所得数据为(1420405751.8000.028 )Hz ,这便是著名的氢的“21cm谱线”,是氢的两个超精细态之间1420兆周谱线的波长。通过捕捉这一谱线的射电望远镜,天文学家便可以观察氢原子气体浓集处的位置和速度。4结束语 由于篇幅和水品

8、所限,我们并未能对论题作深入而严谨的探讨,但通过以上这些例子,线性代数充分展现了其在量子力学中的强大作用,我们有理由相信线性代数在其他领域也有着不可或缺的作用;其次,我们可以发现原来复杂深奥的量子力学在用线性代数的语言表述变得十分简洁清晰,使我们能够构建出明析的物理图像。相信随着我们知识的增加,线性代数会帮我们更清晰的理解某些复杂概念与方法。5参考文献1R.P.Feynman,R.B.leighton,M.sands.The Feynman Lectures on Physics(Volume III).The New Millennium Edition.California Institute of Technology,2010.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服