ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:671KB ,
资源ID:3109783      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3109783.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(直线的参数方程及其应用举例.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

直线的参数方程及其应用举例.doc

1、直线的参数方程及应用yh0hP0hP()Q 问题1:(直线由点和方向确定) 求经过点P0(),倾斜角为的直线的参数方程. 设点P()是直线上任意一点,(规定向上的方向为直线L的正方向)过点P作y轴的平行线,过P0作x轴的平行线,两条直线相交于Q点. 1)当与直线同方向或P0和P重合时,yh0hP()P0hQP0P|P0P| 则P0QP0Pcos Q PP0Psin2)当与直线反方向时,P0P、P0Q、Q P同时改变符号P0P|P0P| P0QP0Pcos Q PP0Psin 仍成立设P0Pt,t为参数,又P0Q, tcos Q P =t sin 即是所求的直线的参数方程 P0Pt,t为参数,t

2、的几何意义是:有向直线上从已知点P0()到点 P()的有向线段的数量,且|P0P|t| 当t0时,点P在点P0的上方; 当t0时,点P与点P0重合; 当t0时,点P在点P0的右侧; 当t0时,点P与点P0重合;yh0hPP0h 当t0时,点P在点P0的左侧;问题2:直线上的点与对应的参数t是不是一 对应关系? 我们把直线看作是实数轴, 以直线向上的方向为正方向,以定点P0 为原点,以原坐标系的单位长为单位长, 这样参数t便和这条实数轴上的点P建立了 一一对应关系.问题3:P1、P2为直线上两点所对应的参数分别为t1、t2 , 则P1P2?,P1P2=? P1P2P1P0P0P2t1t2t2t1

3、,P1P2= t2t1问题yh0hP1P0hP24:若P0为直线上两点P1、P2的中点,P1、P2所对应的 参数分别为t1、t2 ,则t1、t2之间有何关系? 根据直线参数方程t的几何意义, P1Pt1,P2Pt2,P0为直线 上两点P1、P2的中点,|P1P|P2P| P1PP2P,即t1t2, t1t20 一般地,若P1、P2、P3是直线上的点, 所对应的参数分别为t1、t2、t3,P3为P1、P2的中点 则t3 (P1P3P2P3, 根据直线参数方程t的几何意义, P1P3= t3t1, P2P3= t3t2, t3t1=(t3t2,) ) 总结:1、 直线参数方程的标准式(1)过点P0

4、(),倾斜角为的直线的参数方程是 (t为参数)t的几何意义:t表示有向线段的数量,P() P0P=t P0P=t 为直线上任意一点. (2)若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2=t2t1 P1P2=t 2t 1 (3) 若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3 则P1P2中点P3的参数为t3,P0P3= (4)若P0为P1P2的中点,则t1t20,t1t20,设这个二次方程的两个根为t1、t2,由韦达定理得 t1t2, t1t2 ,由M为线段AB的中点,根据t的几何意义,得| PM| 中点M所对应的参数为t M=,将此值代入直线的标准参数

5、方程*,M点的坐标为 即 M(,)(3) |AB|t 2t 1 点拨:利用直线的标准参数方程中参数t的几何意义,在解决诸如直线上两点间的距离、直线上某两点的中点以及与此相关的一些问题时,比用直线的普通方程来解决显得比较灵活和简捷.例7:已知直线经过点P(1,3),倾斜角为, (1)求直线与直线:的交点Q与P点的距离| PQ|; (2)求直线和圆16的两个交点A,B与P点的距离之积. 解:(1)直线经过点P(1,3),倾斜角为,直线的标准参数方 程为,即(t为参数)代入直线: 得 整理,解得t=4+2 t=4+2即为直线与直线的交点Q所对应的参数值,根据参数t的几 何意义可知:|t|=| PQ|

6、,| PQ|=4+2.(2) 把直线的标准参数方程为(t为参数)代入圆的方程16,得,整理得:t28t+12=0, =82-4120,设此二次方程的两个根为t1、t2 则t1t2=12 根据参数t的几何意义,t1、t2 分别为直线和圆16的两个交点A, B所对应的参数值,则|t1|=| PA|,|t2|=| PB|,所以| PA| PB|=|t1 t2|=12点拨:利用直线标准参数方程中的参数t的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(1,6)和B(1,2),对称轴与轴平行,开口向

7、右, 直线y=2+7被抛物线截得的线段长是4,求抛物线方程. 解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为(,2) 方程为(y2)2=2P(x) (P0) 点B(1,2)在抛物线上,(22)2=2P(1) P=8P 代入 得(y2)2=2P2P+16 将直线方程y=2+7化为标准的参数方程tg=2, 为锐角, cos =, sin= 得(t为参数) 直线与抛物线相交于A,B, 将代入并化简得: 0 ,由=0,可设方程的两根为t1、t2, 又|AB|=t 2t 1 4 =(4)2 化简,得(6P)2=100 P=16 或P=-4(舍去) 所求的抛物线方程为(y2)2=3248点拨

8、:(1)(对称性) 由两点A(1,6)和B(1,2)的对称性及抛物线的对称性质,设出抛物线的方程(含P一个未知量,由弦长AB的值求得P). (2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。对于有些题使用直线的参数方程相对简便些.例9:已知椭圆,AB是通过左焦点F1的弦,F2为右焦点, 求| F2A| F2B|的最大值.解:由椭圆方程知2,b=,c=1, F1(0,0),F2(2,0),设过的弦所在直线的参数方程为(t为参数) 代入椭圆方程整理得(3sin2)t26 t cos9=0 ,=36cos236(3sin2)0此方程的解为t1、t2,分别

9、为A、B两点对应的参数,由韦达定理t1t2= t1 t2 根据参数t的几何意义,t1、t2 分别为过点F1的直线和椭圆的两个交点 A, B所对应的参数值,| F1A|t1| |F1B|t2| |AB|=t 2t 1 | F1A|F1B|t1|t2|=|t1t2| 由椭圆的第一定义| F1A| F2A|24, | F1B|+| F2B|=24 | F2A| F2B|=(4-| F1A|)(4-| F1B|)=16-4|AB|+| F1A|F1B| =16-4t 2t 1+|t1t2|=16-4+ =16- 当sin21时,| F2A| F2B|有最大值点拨:求过定点的直线与圆锥曲线相交的距离之积

10、,利用直线的参数方程解 题,此题中两定点F1(0,0),F2(2,0),显然F1坐标简单,因此选择过F1 的直线的参数方程,利用椭圆的定义将| F2A| F2B| 转化为| F1A|F1B|. 方法总结:利用直线的参数方程 (t为参数),给研究直线与圆锥曲线C:F()=0的位置关系提供了简便的方法. 一般地,把的参数方程代入圆锥曲线C:F()=0后,可得一个关于t 的一元二次方程,=0,1、(1)当0时, 与C相交有两个交点;2、 当0时,方程=0的两个根分别记为t1、t2,把t1、t2分别代入的参数方程即可求的与C的两个交点A和B的坐标.3、 定点P0()是弦AB中点 t1+t2=04、 被

11、C截得的弦AB的长|AB|t1t2|;P0AP0B= t1t2;弦AB中点M点对应的参数为;| P0M |=基础知识测试2:7、 直线(t为参数)与椭圆交于A、B两点,则|AB|等于( ) A 2 B C 2 D 8、直线 (t为参数)与二次曲线A、B两点,则|AB|等于( ) A |t1+t2| B |t1|t2| C |t1t2| D 9、 直线(t为参数)与圆有两个交点A、B,若P点的坐 标为(2,-1),则|PA|PB|= 10、过点P(6, )的直线(t为参数)与抛物线y2=2相交于A、B两点,则点P到A,B距离之积为 . 基础知识测试答案1、 2、D 3、C 4、 5、B 6、4 7、 B8、 C 9、4 10、 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服