ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:68KB ,
资源ID:3109220      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3109220.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(十字相乘法分解因式.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

十字相乘法分解因式.doc

1、 十字相乘法分解因式 同学们都知道,型的二次三项式是分解因式中的常见题型,那么此类多项式该如何分解呢? 观察=,可知=。 这就是说,对于二次三项式,如果常数项b可以分解为p、q的积,并且有p+q=a,那么=。这就是分解因式的十字相乘法。 下面举例具体说明怎样进行分解因式。 例1、       因式分解。 分析:因为           7x  +  (-8x) =-x 解:原式=(x+7)(x-8) 例2、       因式分解。 分析:因为              -2x+(-8x)=-10x 解:原式=(x-2)(x-8) 例3、       因式分解。

2、分析:该题虽然二次项系数不为1,但也可以用十字相乘法进行因式分解。       因为           9y  +  10y=19y 解:原式=(2y+3)(3y+5) 例4、       因式分解。 分析:因为           21x + (-18x)=3x 解:原式=(2x+3)(7x-9) 例5、       因式分解。 分析:该题可以将(x+2)看作一个整体来进行因式分解。 因为  -25(x+2)+[-4(x+2)]= -29(x+2) 解:原式=[2(x+2)-5][5(x+2)-2]         =(2x-1)(5x+8) 例6、      

3、 因式分解。 分析:该题可以先将()看作一个整体进行十字相乘法分解,接着再套用一次十字相乘。 因为                       -2+[-12]=-14     a  +  (-2a)=-a    3a  +(-4a)=-a 解:原式=[-2][ -12]         =(a+1)(a-2)(a+3)(a-4) 从上面几个例子可以看出十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握。但要注意,并不是所有的二次三项式都能进行因式分解,如在实数范围内就不能再进一步因式分解了 因式分解的一点补充——十字相乘法 宜昌九中 尤启平 教学目标

4、 1.使学生掌握运用十字相乘法把某些形如ax2+bx+c的二次三项式因式分解; 2.进一步培养学生的观察力和思维的敏捷性。 教学重点和难点 重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式因式分解。 难点:灵活运用十字相乘法因分解式。 教学过程设计 一、 导入新课 前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。 因此,我们得到x2+(p+q)x+pq=(x+p)(x+q). 课前练习:下列各式因式分解 1.- x

5、2+2 x+15 2.(x+y)2-8(x+y)+48; 3.x4-7x2+18; 4.x2-5xy+6y2。 答:1.-(x+3)(x-5); 2.(x+y-12)(x+y+4); 3.(x+3)(x-3)(x2+2); 4.(x-2y)(x-3y)。 我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。 对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如a

6、x2+bx+c的二次三项式因式分解。 二、新课 例1 把2x2-7x+3因式分解。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3

7、 1 -1 1 -3 2 × 3 2 × 1 2 × -3 2 × -1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1) 1×(-1)+2×(-3) =5 =7 = -5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解 2x2-7x+3=(

8、x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下: a1 c1 a2 × c2 a1c2 + a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二

9、次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2)。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2 把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 × -

10、5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用直字相乘法分解因式。 解 6x2-7x-5=(2x+1)(3x-5)。 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是 1 -3

11、 1 × 5 1×5+1×(-3)=2 所以x2+2x-15=(x-3)(x+5)。 例3 把5x2+6xy-8y2分解因式。 分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 × -4

12、1×(-4)+5×2=6 解 5x2+6xy-8y2=(x+2y)(5x-4y)。 指出:原式分解为两个关于x,y的一次式。 例4 把(x-y)(2x-2y-3)-2分解因式。 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先化简,进行多项式的乘法运算,把变形后的多项式再因式分解。 问:两个乘积的式子有什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。

13、 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 1 -2 =2(x-y)2-3(x-y)-2 2 × +1 =[(x-y)-2][2(x-y)+1] 1×1+2×(-2)=-3 =(x-y-2)(2x-2y+1)。 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。 三、课堂练习 1.用十字相乘法因式分解: (1)2x2-5x-12; (2)3x

14、2-5x-2; (3)6x2-13x+5; (4)7x2-19x-6; (5)12x2-13x+3; (6)4x2+24x+27。 2.把下列各式因式分解: (1)6x2-13x+6y2; (2)8x2y2+6xy-35; (3)18x2-21xy+5y2; (4)2(a+b)2+(a+b)(a-b)-6(a-b)2。 答案:1.(1)(x-4)(2x+3); (2)(x-2)(3x+1); (3)(2x-1)(3x-5); (4)(x

15、3)(7x+2); (5)(3x-1)(4x-3); (6)(2x+3)(2x+9)。 2.(1)(2x-3y)(3x-2y); (2)(2xy+5)(4xy-7); (3)(3x-y)(6x-5y); (4)(3a-b)(5b-a)。 四、小结 1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题: (1)正确的十字相乘必须满足以下条件: a1 c1 在式子 中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上

16、式中,斜 a2 c2 向的两个数必须满足关系a1c2+a2c1=b,分解思路为“看两端,凑中间。” (2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c1是常数项;在下一行的两个数中,a2是第二个因式中的一次项的系数,c2是常数项。 (3)二次项系数a一般都把它看作是正数(如果是负数,则应提出负号,利用恒等变形把它转化为正数),只需把经分解在两个正的因数。 2.形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式。 3.凡是可用代换的方法转化为二次三项式

17、ax2+bx+c的多项式,有些也可以用十字相乘法分解因式,如例4。 五、作业 1.用十字相乘法分解因式: (1)2x2+3x+1; (2)2y2+y-6; (3)6x2-13x+6; (4)3a2-7a-6; (5)6x2-11xy+3y2; (6)4m2+8mn+3n2; (7)10x2-21xy+2y2; (8)8m2-22mn+15n2。 2.把下列各式分解因式: (1)4n2+4n-15; (2)6a2+a-35; (3)5x2-8x-13; (4)4x2+15x+9; (5)15x2+

18、x-2; (6)6y2+19y+10; (7)20-9y-20y2; (8)7(x-1)2+4(x-1)(y+2)-20(y+2)2。 答案: 1.(1)(2x+1)(x+1); (2)(y+2)(2y-3); (3)(2x-3)(3x-2); (4)(a-3)(3a+2); (5)(2x-3y)(3x-y); (6)(2m+n)(2m+3n); (7)(x-2y)(10x-y); (8)(2m-3n)(4m-5n)。 2.(1)(2n-

19、3)(2n+5); (2)(2a+5)(3a-7); (3)(x+1)(5x-13); (4)(x+3)(4x+3); (5)(3x-1)(5x+2); (6)(2y+5)(3y+2); (7)-(4y+5)(5y-4); (8)(x+2y+3)(7x-10y-27)。 课堂教学设计说明 1.为了使学生切实掌握运用十字相乘法把某些二次三项式因式分解的思路和方法,在教学设计中,先通过例1,较祥尽地讲解借助画十字交叉线分解系数的具体方法,在此基础上再进一步概括如何运用十

20、字相乘法把二次三项式ax2+bx+c进行因式分解的一般思路和方法。只有使学生掌握了十字相乘法的一般法则,才能进一步指导解决各种具体的问题,这种从特殊到一般,再从一般到特殊的认识问题的过程,是符合学生的认识问题的过程。 2.对于借助画十字,用观察的方法,选择和确定合适的数组,把二次三项式运用十字相乘法分解因式,学生最初是有一定困难的。所以在教学中应循序渐进,首先讲解例1时,要求学生把分解二次项系数常数项的各种情况都画十字交叉线表示,运用观察的方法,从中选取合适的数组,然后归纳为一般情况,总结出一般的方法,再通过例2加以巩固。 当学生熟悉了这种方法,摸索出规律后,就会发现这是一种非常简单又好用的方法!

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服