ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:54.50KB ,
资源ID:3085842      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3085842.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(十字相乘法(多项式因式分解--教案).doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

十字相乘法(多项式因式分解--教案).doc

1、十字相乘法 教案教学目标:1.知识目标:使学生掌握通过代换方法,进行可以转化为x2(ab)xab型的多项式因式分解,领会整体代换、字母表示式和化归等数学方法。理解运用十字相乘法分解因式的关键。2.能力目标:通过问题设计,培养学生观察、分析、抽象、概括的逻辑思维能力;训练学生思维的灵活性、层次性,逐步提高学生运用变量代换思想和化归思想解决问题的能力。3.情感目标:通过问题解决,培养合作意识,激发成功体验,鼓励创新思维。教学设计思想:本课是简单介绍十字相乘法后的第二节课,结合学生基础较好的特点,我改变教参中的处理方式,尝试以二期课改的理念为指导,帮助学生进行探索性地学习,更好地实现有效学习。在设计

2、上,希望使学生体会字母表示式的想法和数学题的演变,学会透过现象看本质,灵活运用十字相乘法分解因式,进一步理解运用十字相乘法分解因式的关键。感悟,从整体上观察、思考和处理问题是一种重要的数学方法,也是解决数学问题、发展数学内容时常用技能和技巧。化归思想是数学中解决问题的主要思想方法。教学过程:一、 复习引入1回忆课本上十字相乘法分解因式的一般步骤例:把多项式x23x + 2分解因式。 x x 解:x23x + 2 (x) (x)像这种借助于画十字交叉线分解因式的方法叫做十字相乘法。提问:是不是所有的二次三项式都能用十字相乘法分解因式?答:不是,(反例:x2 +x2)。提问:形如x2pxq的二次三

3、项式满足什么条件时可以用十字相乘法分解因式?请同学总结:(板书)x2pxq当qab,p ab时, x2pxq = (xa) (xb) (*)再提问:在将首项系数为1的二次三项式因式分解时,你认为要注意什么?答:试分解后要及时检验,纵向相乘得首项,末项;交叉相乘得中间项。应该注意的是一次项的系数和末项的系数都是包含了符号的。如果常数项q是正数,那么把它分解成两个同号因数的积,它们的符号与一次项系数p的符号相同。如果常数项q是负数,那么把它分解成两个异号因数的积,其中绝对值较大的因数与一次项系数p的符号相同。(根据情况,可选择数学符号语言表述)2计算:(口答) ; (x1) 2 (x1) (x1)

4、(x1) 2; 体会公式中的字母可以表示数,也可以表示代数式。二、 引导问题设计,把可以转化为x2(ab)xab型的多项式分解因式,渗透分类讨论、整体代换和化归思想方法。1.复习中已经知道,公式里的字母不仅可以表示数,也可以表示式,我们把这个想法用到十字相乘法的因式分解中去,想一想,怎样分解下面的因式:例. y63y3+2; (a+b) 23(a+b)+2;中设“y3 ”为 “x”, 中设“(a+b)”为 “x”;这两道题可化归为例进行分解。请同学体会,引入辅助元“x”,培养整体代换和化归思想方法。可以帮助我们利用十字相乘法,灵活进行较复杂多项式的分解因式)引导同学对问题中 (a+b) 2 3

5、 (a+b)+2;进行变式设计(分解因式:(a+b -3) (a+b)+2;)理解:(*)式中“x”只能是单独的字母吗?答:单项式,多项式,整式(单项,多项式的统称),代数式(如不是整式,虽不是因式分解,但仍可以进行代数式的恒等变形)试一试,仿例题,将“x”可能的情况分类,然后设计题目,训练整体代换和化归思想方法的运用。*表扬有创意的设计,请同学解题,分析,进一步理解运用十字相乘法分解因式的注意点。2.提问:(*)式中“末项”只能是常数吗?答:单项式,多项式,例2把下列两式分解因式。 x26xy8y2;(a+1) 2 3 (a+1)b + 2b2;分析:把x26xy8y2看成是x的二次三项式,

6、这里常数项是8y2,一次项系数是6y,把8y2分解成2y与4y的积,2y4y6y,正好等于一次项系数。解: x26xy8y2(x2y)(x4y)解:(a+1) 2 3 (a+1)b + 2b2;=(a-b+1) (a-2b+1)例3:把(x2-3x2) (x2-3x-4)72分解因式;解法1:设“(x2-3x2)”为 “y”,解法2:设“(x2-3x-4)”为 “y”,解法3:“(x2-3x)”为 “y”。略变式:(x-1 )(x+1) (x2) (x4)-72;(x2-5x4) (x2-x-2)723.课堂练习:练习题(题目分组,小组互批)(分析时,引导同学总结多项式分解因式的注意点,如有公

7、因式先提公因式,一般二次项系数为负数时,化负为正;一定要分解到每个因式都不能再分解为止,等等)4.请你设计一道形式如例1的因式分解题。进行变式设计,体会字母可以代替任意的数和式。(使学生掌握通过代换方法,把可以转化为x2(ab)xab型的多项式分解因式。)(同学合作,交流)。5.课堂小结:(1.知识;2.数学思想方法;3.其他)略6.作业:(1.P 294:1;P 310:24,25。2. 5中的作业)(7.问:“首项系数不是1的二次三项式ax2bxc能利用十字相乘法进行因式分解吗?分析依据:因式分解是与整式乘法相反方向的恒等变形请同学们思考,探求形如ax2bxc的二次三项式进行因式分解的一般

8、步骤,并设计一组可以转化为ax2bxc型的多项式的分解因式题目(给出解答),巩固分类讨论、整体代换和化归思想方法。(回家作业)8因式分解有广泛的应用,请尝试改变题型设计,1.求值题例:已知x22x=3,求代数式x26x的值;已知(x2y2 )(x2y2 -1)-6=0,求代数式x2y2的值;已知3x2xy-2y2=0,求代数式x2- y2 +x-y2的值;2.其他引导同学问题设计。(回家作业) )由整式乘法得到 (a2xc1)(a2xc2)a1a2x2a1c2xa2c1xc1c2a1a2x2(a1c2a2c1)xc1c2反过来就得到a1a2x2(a1c2a2c1)xc1c2(a1xc1)(a2

9、xc2)我们发现二次项系数a分解成a1、a2,常数项c分解成c1、c2,并且把a1、a2、c1、c2排成如下:这里按斜线交叉相乘,再相加,就得到a1c2a2c1,如果它正好等于ax2bxc的一次项系数b,那么ax2bxc就可以分解成(a1xc1)(a2xc2),其中a1、c1位于图的上一列,a2、c2位于下一列。必须注意,分解因数及十字相乘法都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解。例如:把 6x27x5分解因式。6x27x5(2x1)(3x5)例3把多项式 6y213y6 分解因式仿照课本p292,例8,请你设计一组题,体会字母可以代替任意的数和式。掌握通过代换方法,把可以转化为a1a2x2(a1c2a2c1)xc1c2型的多项式分解因式。小结:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服