ImageVerifierCode 换一换
格式:DOC , 页数:32 ,大小:211KB ,
资源ID:3074718      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3074718.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(大学概率论与数理统计必过复习资料及试题解析(绝对好用).doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

大学概率论与数理统计必过复习资料及试题解析(绝对好用).doc

1、 概率论与数理统计复习提要 第一章 随机事件与概率 1事件的关系 2运算规则 (1) (2) (3) (4) 3概率满足的三条公理及性质: (1) (2) (3)对互不相容的事件,有 (可以取) (4) (5) (6),若,则, (7) (8) 4古典概型:基本事件有限且等可能 5几何概率 6条件概率 (1) 定义:若,则 (2) 乘法公式: 若为完备事件组,则有 (3) 全概率公式: (4) Bayes公式: 7事件的独立性: 独立 (注意独立性的应用) 第二章 随机变量与概率分布 1 离散随机变量:取有限或可列个值,满足(1),(2) (3)对任意, 2 连续随机变量:具有概率密度函数,满

2、足(1) (2) ; (3)对任意, 4 分布函数 ,具有以下性质 (1);(2)单调非降;(3)右连续; (4),特别; (5)对离散随机变量, ; (6) 为连续函数,且在连续点上, 5 正态分布的概率计算 以记标准正态分布的分布函数,则有 (1);(2);(3)若,则 ; (4)以记标准正态分布的上侧分位数,则 6 随机变量的函数 (1)离散时,求的值,将相同的概率相加; (2)连续,在的取值范围内严格单调,且有一阶连续导数, ,若不单调,先求分布函数,再求导。 第三章 随机向量 1 二维离散随机向量,联合分布列,边缘分布 ,有 (1);(2 (3), 2 二维连续随机向量,联合密度,边

3、缘密度,有 (1);(2) (4) (3); , 3 二维均匀分布,其中为的面积 4 二维正态分布 且; 5 二维随机向量的分布函数 有 (1)关于单调非降;(2)关于右连续; (3); (4),; (5); (6)对二维连续随机向量, 6随机变量的独立性 独立 (1) 离散时 独立 (2) 连续时 独立 (3) 二维正态分布独立,且 7随机变量的函数分布 (1) 和的分布 的密度(2) 最大最小分布 第四章 随机变量的数字特征 1期望 (1) 离散时 (2) 连续时 , ; ,; (3) 二维时 , (4);(5); (6); (7)独立时, 2方差 (1)方差,标准差(2); (3); (

4、4)独立时, 3协方差 (1); ; ; (2) (3); (4)时,称不相关,独立不相关,反之不成立,但正态时等价; (5) 4相关系数 ;有, 5 阶原点矩, 阶中心矩 第五章 大数定律与中心极限定理 1Chebyshev不等式 2大数定律 3中心极限定理 (1)设随机变量独立同分布, 或 , 或 或 , (2)设是次独立重复试验中发生的次数,则对任意, 或理解为若,则 第六章 样本及抽样分布 1总体、样本 (1) 简单随机样本:即独立同分布于总体的分布(注意样本分布的求法); (2) 样本数字特征: 样本均值(,); 样本方差 )样本标准 样本阶原点矩,样本阶中心矩 2统计量:样本的函数

5、且不包含任何未知数 3三个常用分布(注意它们的密度函数形状及分位点定义) (1)分布 ,其中 标准正态分布,若 且独立,则; (2)分布 ,其中且独立; (3)分布 ,其中 性质 4正态总体的抽样分布 (1); (2 ; (3 且与独立; (4) ; ,(5) (6) 第七章 参数估计 1矩估计: (1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2极大似然估计: (1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min或max) 3估计量的评选原则 ,则为无偏

6、; (2) 有效性:两个无偏估计中方差小的有效; (1)无偏性:若 概率论与数理统计期末试题(2)与解答 一、填空题(每小题3分,共15分) 1 设事件仅发生一个的概率为0.3,且,则 生的概率为 2 设随机变量服从泊松分布,且,则_. 3 设随机变量在区间上服从均匀分布,则随机变量在区间 密度为 4 设随机变量相互独立,且均服从参数为的指数分布,_, 5 设总体的概率密度为 是来自的样本,则未知参数的极大似然估计量为 解:1 即 所以 . 2 由 知 即 解得 ,故 . 3设的分布函数为的分布函数为,密度为则 因为,所以,即 故 另解 在上函数 严格单调,反函数为 所以 4 ,故 . 5似然

7、函数为 解似然方程得的极大似然估计为 二、单项选择题(每小题3分,共15分) 1设为三个事件,且相互独立,则以下结论中不正确的是 (A)若,则与也独立. (B)若,则 (C)若,则 与也独立. 与也独立 (D)若,则与也独立. ( ) 2设随机变量的分布函数为,则的值为 (A). (B) (C). (D). ( ) 3设随机变量和不相关,则下列结论中正确的是 (A)与独立. (B) (C). (D). ( ) 4设离散型随机变量和的联合概率分布为 若独立,则的值为 (A). (A). . ( ) (C) (D) 5设总体的数学期望为为来自的样本,则下列结论中 正确的是 (A)X1是的无偏估计量

8、. (B)X1是的极大似然估计量. (C)X1是的相合(一致)估计量. (D)X1不是的估计量. ( ) 解:1因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D) 事实上由图 可见A与C不独立 2所以 3由不相关的等价条件知应选(B). 4若独立则有 应选(A). 2 =, 9 故应选(A) 5,所以X1是的无偏估计,应选(A). 三、(7分)已知一批产品中90% 0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设任取一产品,经检验认

9、为是合格品 任取一产品确是合格品 则(1) (2) . 四、(12分)从学校乘汽车到火车站的途中有3 件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差. 解:的概率分布为 即 的分布函数为 五、(10分)设二维随机变量在区域 匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概率密 (1)的概率密度为 (2)利用公式 其中 当 或时 时 故的概率密度为 的分布函数为 或利用分布函数法 六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标 互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离

10、1) ; (2) . 七、(11分)设某机器生产的零件长度(单位:cm),今抽取容量为16 样本,测得样本均值,样本方差. (1)求的置信度为0.95 区间;(2)检验假设(显著性水平为0.05). (附注) 解:(1)的置信度为下的置信区间为 所以的置信度为0.95的置信区间为(9.7868,10.2132) (2)的拒绝域为 , 因为 ,所以接受 概率论与数理统计期末试题(3)与解答 一、填空题(每小题3分,共15分) (1) 设事件与相互独立,事件与互不相容,事件与互不相容, ,则事件、中仅发生或仅 概率为 (2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取

11、 个球,发现它们是同一颜色的,则这颜色是黑色的概率为 (3) 设随机变量的概率密度为 现对 察,用表示观察值不大于0.5的次数,则_. (4) 设二维离散型随机变量的分布列为 若,则 (5) 设是总体的样本,是样本方差,若, (注:, , , ) 解:(1) 因为 与不相容,与不相容,所以,故 同理 . . (2)设四个球是同一颜色的, 四个球都是白球,四个球都是黑球 则 . 所求概率为 所以 (3) 其中 , , (4)的分布为 这是因为 ,由 得 , 故 (5) 即 ,亦即 . 二、单项选择题(每小题3分,共15分) (1)设、为三个事件,且,则有 (A) (B) (C) (D) (2)设

12、随机变量的概率密度为 且,则在下列各组数中应取 (A) (B) (C). (D) (3)设随机变量与相互独立,其概率分布分别为 则有 ( ) ) (A) (B) (C) (D) ( ) (4)对任意随机变量,若存在,则等于 (A) (B) (C) (D) ( ) (5)设 为正态总体的一个样本,表示样本均值,则的 置信度为的置信区间为 (B) (C) ( ) (D) 解 (1)由知,故 (A) 应选C. (2) 即 时 故当 应选 (3) 应选 (4) 应选 (5)因为方差已知,所以的置信区间为 应选D. 三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的 箱子中丢失一件

13、产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。 解:设从箱中任取2件都是一等品 丢失等号 . 则 ; 所求概率为 四、(10分)设随机变量的概率密度为 求(1)常数; (2)的分布函数; (3) 解:(1) (2)的分布函数为 (3) 五、(12分)设的概率密度为 求(1)边缘概率密度; (2); (3)的概率密度 (2) (3) 时 时 六、(10分)(1)设,且与独立,求; (2)设且与独立,求. ; (2)因相互独立,所以 七、(10分)设总体的概率密度为 试用来自总体的样本,求未知参数的矩估计和极大似然估计 解:先求矩估计 故的矩估计为 再求极

14、大似然估计 所以的极大似然估计为 概率论与数理统计期末试题(4)与解答 一、填空题(每小题3分,共15分) (1) 设,,则至少发生一个的概率为 (2) 设服从泊松分布,若,则 (3) 设随机变量的概率密度函数为 今对进行8 独立观测,以表示观测值大于1的观测次数,则 (4) 的指数分布,由5个这种元件串联而组成的系统,能够 正常工作100小时以上的概率为 (5) 设测量零件的长度产生的误差服从正态分布,今随机地测量16 ,. 在置信度0.95下,的置信区间为 得 (2) 故 . 解:(1) (3),其中 . (4)设第件元件的寿命为,则求概率为 (5)的置信度下的置信区间为 . 系统的寿命为

15、, 所以的置信区间为(). 二、单项选择题(下列各题中每题只有一个答案是对的,请将其代号填入( ) 中,每小题3分,共15分) (1)是任意事件,在下列各式中,不成立的是 (A) (B) (C) . . (D). ( ) (2)设是随机变量,其分布函数分别为,为使 是某一随机变量的分布函数,在下列给定的各组数值 中应取 . (B). (C). (D). ( ) (3)设随机变量的分布函数为,则的分布函数为 (A) (A). (B) . (D). ( ) (4)设随机变量的概率分布为 . 且满足,则的相关系数为 (C) . (C). (D). ( ) 相互独立,根据切比 (5)设随机变量 雪夫不

16、等式有 (A)0. (B . (C). (D). ( ) 解:(1)(A):成立,(B): 应选(B) (A). (B) (2). 应选(C) (3) 应选(D) (4)的分布为 ,所以, 于是 . 应选(A) (5) 由切比雪夫不等式 应选(D) 三、(8分)在一天中进入某超市的顾客人数服从参数为的泊松分布,而进入 超市的每一个人购买种商品的概率为,若顾客购买商品是相互独立的, 求一天中恰有个顾客购买种商品的概率。 解:设一天中恰有个顾客购买种商品 一天中有个顾客进入超市 则 四、(10分)设考生的外语成绩(百分制)服从正态分布,平均成绩(即参 数之值)为72分,96以上的人占考生总数的2.

17、3%,今任取100个考生 的成绩,以表示成绩在60分至84分之间的人数,求(1)的分布列. (2) 和. 解:(1),其中 由 得 所以 故的分布列为 (2),. 五、(10分)设在由直线及曲线y 上服从均匀分布, (1)求边缘密度和,并说明与是否独立. (2)求. 解:区域D的面积 的概率密度为 所围成的区域 (1) (2)因,所以不独立. (3) . 六、(8分)二维随机变量在以为顶点的三角形区 域上服从均匀分布,求的概率密度。 设的概率密度为,则 当 或时 当 时 所以的密度为 解2:分布函数法,设的分布函数为,则 故的密度为 七、(9分)已知分子运动的速度具有概率密度 为的简单随 机样

18、本 (1)求未知参数的矩估计和极大似然估计; (2)验证所求得的矩估计是否为的无偏估计。 解:(1)先求矩估计 再求极大似然估计 得的极大似然估计 (2)对矩估计 是的无偏估计 所以矩估计 八、(5分)一工人负责台同样机床的维修,这台机床自左到右排在一条直 线上,相邻两台机床的距离为(米)。假设每台机床发生故障的概率均为 ,且相互独立,若表示工人修完一台后到另一台需要检修的机床所走 的路程,求 解:设从左到右的顺序将机床编号为 为已经修完的机器编号,表示将要去修的机床号码,则 于是 概率论与数理统计试题(5) 一、 判断题(每小题3分,本题共15分。正确打“”,错误打“”) 设A、B是中的随机

19、事件,必有P(A-B)=P(A)-P(B) ( ) 设A、B是中的随机事件,则AB=AABB ( ) 若X服从二项分布b(k;n,p), 则EX=p ( 样本均值= 是母体均值EX的一致估计 ( ) XN(,) , YN(,) ,则 XYN(0, ) ( ) 二、 计算(10分) (1)教室里有个学生,求他们的生日都不相同的概率; (2)房间里有四个人,求至少两个人的生日在同一个月的概率 三、(10分) 设,证明、互不相容与、 立 四、(15分)某地抽样结果表明,考生的外语成绩 绩(即参数之值)为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率。分布表如下

20、 x 0 1 1.5 2 2.5 (x) 0.5 0.841 0.933 0.977 0.994 0.999 五、(15分) 设的概率密度为 问是否独立? 六、(20分)设随机变量服从几何分布,其分布列为 , 求与 七、(15分)设总体服从指数分布 试利用样本,求参数的极大似然估计 八 概率论与数理统计试题(5)评分标准 一 ; ; ; ; 。 二 解 (1)设他们的生日都不相同,则 -5分 (2)设至少有两个人的生日在同一个月,则 ; 或 -10分 三 证 若、互不相容,则,于是 所以 、不相互独立.-5分 若、相互独立,则,于是, 即、不是互不相容的.-5分 四 解 -3分 -7分 所求概率为 分 =2(1)-1=20.841-1=0.682-15分 五 解 边际密度为 -5分 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服