ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:67.73KB ,
资源ID:3050931      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3050931.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基本不等式及其应用教学设计.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基本不等式及其应用教学设计.docx

1、 基本不等式及其应用教学设计一、教学内容分析本节课基于学生已学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式的引入与学习是必要的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,所以基本不等式应重点研究。从教学设计理念上来看,教学中教师应发挥组织者、引导者、合作者的作用,不仅要让学生接受、记忆、模仿和练习,更要注重引导他们自主探索、动手实践、合作交流、师生互动,引导学生主体参与、探究本质、经历过程。从知识应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所

2、蕴涵的数学思想方法如数形结合、归纳猜想、演绎推理、分析法证明等在各种不等式研究问题中有着广泛的应用;另外它在如“求周长一定,面积最大;面积一定,周长最小”等实际问题的计算中也经常涉及到。从学生能力的培养来看,基本不等式的探究与推导有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。二、学情分析学生在初中阶段,学习了平方、开方、勾股定理、圆等概念,高中阶段学习了不等关系、不等式的性质以及几类不等式的求解,学生对不等式有了初步的了解和应用。但本节内容,变换灵活,应用广泛,条件有限制,考察了学生数形结合、类比转化等数学思想;对学生能灵活应用数学知识解决实际问题的要求较高,在实

3、际问题的解决中应用广泛。因此,必须从基本不等式的代数结构和几何意义两方面入手,才能让学生深刻理解它的本质。另外,在用基本不等式解决最值时,学生往往容易忽视基本不等式使用的前提条件和等号成立的条件,因此,在教学过程中,应借助辨误的方式让学生初步领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用,并在第二课时重点学习与掌握。三、教学目标设计1. 理解并掌握两个基本不等式,并能运用它们解决一些简单问题,如本节课导入环节中的实际问题;2. 思考生活中实际问题的解决方案,感受基本不等式的知识产生过程,并在练习中逐步体会基本不等式应用的特点及优势;3. 经历观察、分析、归纳、总结、抽

4、象概括等思维活动,培养分析问题、解决问题的能力,体会数形结合、类比代换等学习思想;4. 学会用数学的眼光看世界,用数学思维认知世界,养成善于思考的良好习惯;四、教学重点及难点1. 教学重点:两个基本不等式的知识发生过程和证明;基本不等式的应用;2. 教学难点:基本不等式的应用,包括解决实际问题,求最值;3. 几点说明:整堂课主要采用 “问题 思考 剖析 证明应用”的流程,从问题出发,应用数形结合理解不等式,并掌握不等式应用的前提条件和等号成立的条件,尤其是对等号成立时充要条件的理解;在基本不等式的应用时,通过例1可逐步引导学生从基本不等式出发进行求证,然后针对等号成立时的条件能够取到进行思考,

5、接下来再通过具有基本不等式结构特点的例题进行练习,逐步引导学生运用基本不等式解决实际问题及求最值。五、教学方法与手段本节课采用“问题思考剖析归纳应用”的教学设计思路:1. 提出问题、启发诱导,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索;2. 讲练结合,同时采用变式教学,巩固应用,加深理解;3. 以现代信息技术多媒体课件、几何画板作为教学辅助手段,直观演示,不仅启发思考,也加深学生对基本不等式的理解。六、教学过程设计1. 问题提出问题:班级要用班费为秋游做准备,其中有一项要准备塑料绳子,把树干围成矩形作为活动的场所,由于班费有限,如何用最短的绳子围成最大的面积呢?设计意

6、图:引导学生在已学知识的基础上,针对该问题进行思考与讨论,不仅提高对于基本不等式学习的兴趣,更培养它们分析问题的能力;2. 基本不等式1的引入问题:在客观世界中,有些不等关系是永远成立的,引发学生试举一些恒成立的不等关系.根据学生回答,针对 ( )进行提问,既然 ,那么可以用 代替不等式中的 吗?得到:进一步变形可得:思考:l 不等式恒成立, 和 应该满足什么条件;l 不等式的等号成立时, 和 应该满足什么条件;设计意图:l 基于学生所熟知的“平方数为非负数”恒成立的不等关系,引出 ;l 引发学生思考 和 所满足的条件,帮助学生对于基本不等式1中关键条件的理解;3. 基本不等式1对于任意实数

7、和 ,有 ,当且仅当 时等号成立.(1)基本不等式1的辨析l ;l 当且仅当 时等号成立;思考:“当且仅当”的含义是?l 当a=b时,取等号,即 ;l 仅当a=b时,取等号,即 。设计意图:对应问题引入中的两个思考,再次强调基本不等式1中“当且仅当”的含义。(2)基本不等式1的几何解释abl 已知:四个全等的直角三角形构成正方形,直角边分别为a、b,当ab时,构成的正方形如左图所示,当ab时,构成的正方形如右图所示.l 那么:大正方形的面积与四个全等直角三角形面积和的大小关系是?设计意图:给出基本不等式1的几何解释,帮助学生加深对基本不等式1的理解,尤其是对“当且仅当”的理解。4. 基本不等式

8、2的引入问题:当a0,b0时,在不等式 中,以、分别代替a、b,得到什么?得到:设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了两个基本不等式的来源及本质是相同的,突破了重点和难点,而且感受了其中的函数思想,有助于今后的学习。5. 基本不等式2对于任意正数 、 ,有 ,当且仅当 时等号成立.把 和 分别叫做正数、的算术平均数和几何平均数.因此基本不等式2也可叙述为:两个正数的算术平均数不小于它们的几何平均数.(1)基本不等式2的辨析l ;l 当且仅当 时等号成立;思考:“当且仅当”的含义是?l 当a=b时,取等号,即 ;l 仅当a=b时,取等号,即 。(2)基本不等式2的证明证明

9、:法1.因为 、 为正数,所以 、 均存在.由基本不等式1,得,当且仅当 时等号成立.即,当且仅当时等号成立.法2.因为 ,所以 .当 时, .当时, .所以,当且仅当 时, 的等号成立.(3)基本不等式2的扩充思考:当、为零时,基本不等式2是否成立?基本不等式2的扩充:对于任意非负数 、 ,有 ,当且仅当 时等号成立.(4)基本不等式2的几何解释l 已知:AB是半圆O的直径,过圆周上任意一点D做AB的垂线,令AC=a、CB=b,那么DO=_,DC=_;l 得到:_;设计意图:给出基本不等式2的几何解释,帮助学生加深对基本不等式2的理解,尤其是对“当且仅当”的理解.6. 基本不等式的应用例1:

10、已知 ,求证: ,并指出等号成立的条件.证明:方法多种,可进行作差或者由刚学的基本不等式1入手,进行求证,同时也可以运用基本不等式求最值的方法;其中一种方法示范板书为:因为 ,所以 、 同号,并有 , .所以, .当且仅当 ,即 时等号成立.思考:若 ,则代数式 的取值范围是什么?设计意图:考察学生运用基本不等式时,要特别注意等号取到时的条件是否满足。例2:若 的最小值为_,此时练习2: 的最小值为_,此时设计意图:帮助学生辨识基本不等式的结构特点,以及求最值的简单运用。例3. 在周长保持不变的条件下,何时矩形的面积最大?猜想:由几何画板演示得出.解:设矩形的长、宽分别为 、 ( 、 )且 (

11、定值),则同样周长的正方形的边长为 .矩形面积,正方形面积由基本不等式2,得,又由不等式的性质得 ,即 .由题意, (定值),所以 (定值).当且仅当 ,即矩形为正方形时,矩形的面积最大.思考:例3中的 , 为什么要为定值呢?如果不是定值,面积有最大值吗?设计意图:l 通过例2和例3,先让学生通过基本不等式的运用,体验并思考“当两个正数的和为定值时,它们的积有最大值;当两个正数的积为定值时,它们的和有最小值”,这样在第二课时给出该结论效果会更好;l 例3也解决了情境创设环节提出的实际问题,让学生切实感受到学以致用的乐趣;7. 课堂小结lll 初步应用两个基本不等式求最值.8. 作业练习(1)2.4.1卷1(详见附录)(2)思考题l 通过查阅资料,了解这两个基本不等式其它的几何解释.l 在面积保持不变的条件下,正方形的周长与矩形的周长之间有什么大小关系?l 整理一些基本不等式的常用变式并给出证明.20 20

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服