ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:378.50KB ,
资源ID:3013818      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3013818.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数列求和经典例题.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数列求和经典例题.doc

1、数列通项的方法利用观察法求数列的通项.利用公式法求数列的通项:;等差、等比数列公式.应用迭加(迭乘、迭代)法求数列的通项:;构造等差、等比数列求通项: ;.示例已知下列各数列的前n项和的公式为,求的通项公式。题型一 利用公式法求通项例数列an的前n项和记为Sn,a11,an12Sn1(n1)(1)求an的通项公式;(2)等差数列bn的各项为正数,前n项和为Tn,且T315,又a1b1,a2b2,a3b3成等比数列,求Tn.练3数列an是公差大于零的等差数列,,是方程的两根。数列的前项和为,且,求数列,的通项公式。3.已知数列a中,a1,aaaa,则数列通项a_。例已知的首项,求的通项公式,并求

2、的值。题型二 应用迭加(迭乘、迭代)法求通项练1数列中,则数列的通项( ) 练2已知为数列的前项和,求数列的通项公式.例数列中,,且,则( ) 题型三 构造等比数列求通项练1数列中,求通项公式。例已知数列中,求数列的通项公式.练2设数列的前项和为,已知,设,求数列的通项公式数列求和方法1. 基本数列的前项和 等差数列的前项和: 等比数列的前项和:当时,;当时,;2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法.题型一 公式法、性质法求和1.已知为等比数列的前项和,公比,则 2.等差数列中,公差,且,则 .例1求数列的前项和.题型二 拆项分组法求和练2在数

3、列中,已知a1=2,an+1=4an3n1,n.(1)求数列的通项公式;(2)设数列的前n项和为Sn,求Sn。 练.求数列的前项和.例.求和:.题型三 裂项相消法求和例.求和:.例求和:练4已知数列满足(1) 求数列的通项公式。(2)若数列满足,求数列的通项公式。(3)若,求数列的前n项和。【示例】以a1为首项等比数列,q为公比,前n项和S n的推导题型四 错位相减法求和例.设数列为求此数列前项的和 例.设数列an满足a13a232a33n1an,nN*.(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.练1已知数列、满足,。(1) 求数列的通项公式;(2)数列满足,求。练4

4、等比数列中,已知对任意自然数n,求的值 课后练习1设正项等比数列的首项,前n项和为,且。()求的通项;()求的前n项和。2数列的前项和记为求的通项公式;3在数列an与bn中,a1=1,b1=4,数列an的前n项和Sn满足nSn+1-(n+3)Sn=0, nN*.(1)求a2,的值; (2)求数列an通项公式;4设数列的前项和为,对任意的正整数,都有成立,记。求数列的通项公式5设数列an的前n项和为Sn,且对任意正整数n,an+Sn=4096.(1)求数列an的通项公式:(2)设数列log2an的前n项和为Tn.对数列Tn,从第几项起Tn-509?6设数列an的前n项和 。(1)求首项a1 求证 是等比数列(2)求数列an的通项公式7(17)设等差数列的前项和为,公比是正数的等比数列的前项和为,已知的通项公式.8已知数列 的前n项和,数列的前n项和()求数列与的通项公式;()设,证明:当且仅当n3时,.9等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上.(1)求r的值; (11)当b=2时,记 求数列的前项和10设数列的前n项和为对任意的正整数n,都有成立,记 求数列与数列的通项公式;

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服