ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:66.21KB ,
资源ID:3009727      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3009727.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(九年级数学上册圆教案共23套新人教版.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册圆教案共23套新人教版.docx

1、 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆 ※教学目标※ 【知识与技能】 探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别. 【过程与方法】 1.体会圆的不同定义方法,感受圆和实际生活的联系. 2.培养学生把实际问题转化为数学问题的能力. 【情感态度】 在解决问题过程中使学生体会数学知识在生活中的普遍性. 【教学重点】 圆的两种定义的探索,能够解释一些生活问题. 【教学难点】 圆的集合定义方法. ※教学过程※ 一、情境导入 (课件展示图片)观察下列图形,从中找出共同特点. 学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举

2、出一些生活中类似的图形. 二、探索新知 1.圆的定义 (课件展示)观察下列画圆的过程,你能由此说出圆的形成过程吗? 在学生归纳的基础上,引导学生对圆的一些基本概念作界定: 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”. 同时从圆的定义中归纳: (1)圆上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上. 于是得到圆的第二定义:所有到定点O的距离等于定长r的点的集合. 思考 为什么车轮是圆的? 把车轮做成圆形,车轮上各点到车轮

3、中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与地面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理. 2.圆的有关概念 弦:连接圆上任意两点的线段(如图中的AC)叫做弦. 直径:经过圆心的弦(如图中的AB)叫做直径. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A,B为端点的弧记作 ,读作“圆弧AB”或“弧AB”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. 优弧:大于半圆的弧(用三个字母表示,如图中的 )叫做优弧. 劣弧:小于半圆的弧(如图中的 )叫做劣弧. 等圆:能够重合的两个圆叫做等圆

4、半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等. 等弧:在同圆或等圆中,能够相互重合的弧叫做等弧. 三、巩固练习 1.如何在操场上画一个半径是5m的圆?说出你的理由. 2.你见过树木的年轮吗?从树木的年轮,可以很清楚地看出树木生长的年龄,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径平均每年增加多少? 3.如图,一根5m长的绳子,一端拴在柱子上,另一端拴着一只羊,请画出羊的活动区域. 答案:1.首先确定圆心, 然后用5米长的绳子一端固定为圆心端,另一端系在一端尖木棒,木棒以5米长尖端划动一周,所形成的图形就是所画的圆. 2.23÷2÷20=0.575(cm) ,故这棵

5、红衫树的半径每年增加0.575cm. 3. 四、归纳小结 1.师生共同回顾圆的两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点. 2.通过这节课的学习,你还有那些收获? ※布置作业※ 从教材习题24.1 中选取. ※教学反思※ 本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑的习惯,在操作过程中观察圆的特点,加深对所学知识的认识吗,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们的学习兴趣. 24.1.1 圆 01  教学目标 1.了解圆的基本概念,并能准确地表示出来. 2.理解并掌握与圆有关的概念:弦、直径、圆弧、等圆

6、同心圆等. 02  预习反馈 阅读教材P79~80内容,理解记忆与圆有关的概念,并完成下列问题. 1.如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径. 2.圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合. 3.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 4.以点A为圆心,可以画无数个圆;以已知线段AB的长为半径,可以画无数个圆;以点A为圆心

7、AB的长为半径,可以画1个圆. 【点拨】 确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的位置,半径确定圆的大小. 5.到定点O的距离为5的点的集合是以O为圆心,5为半径的圆. 03  新课讲授 例1 (教材P80例1)矩形ABCD的对角线AC,BD相交于点O.求证:A,B,C,D四个点在以点O 为圆心的同一个圆上. 【思路点拨】 要求证几个点在同一个圆上,即需要证明这几个点到同一个点(即圆心)的距离相等. 【解答】 证明:∵四边形ABCD为矩形, ∴OA=OC=12AC,OB=OD=12BD,AC=BD. ∴OA=OC=OB=OD. ∴A,B,C,D四个点在以点O为圆心,OA为

8、半径的圆上(如图). 例2 (教材P80例1的变式)△ABC中,∠C=90°.求证:A,B,C三点在同一个圆上. 【解答】 证明:如图,取AB的中点O,连接OC. ∵在△ABC中,∠C=90°, ∴△ABC是直角三角形. ∴OC=OA=OB=12AB(直角三角形斜边上的中线等于斜边的一半). ∴A,B,C三点在同一个圆上. 【跟踪训练1】 (例1的变式题)(1)在图中,画出⊙O的两条直径; (2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由. 解:(1)作图略. (2)矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形. 【思考】 由刚才的问题

9、思考:矩形的四个顶点一定共圆吗? 例3 已知⊙O的半径为2,则它的弦长d的取值范围是0

10、及点B,O,C分别在一条直线上,图中弦的条数为2. 3.(24.1.1习题)点P到⊙O上各点的最大距离为10 cm,最小距离为8 cm,则⊙O的半径是1或9cm. 【点拨】 这里分点在圆外和点在圆内两种情况. 4.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点.若AC=10 cm,则OD的长为5__cm. 【点拨】 圆心O是直径AB的中点. 5.如图,CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,则∠A的度数为24°. 【点拨】 连接OB构造三角形,从而得出角的关系. 05  课堂小结 1.这节课你学了哪些知识? 2.学会了哪些解圆的有关问题的技巧? 20 × 20

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服