ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:65.14KB ,
资源ID:3009059      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3009059.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(九年级数学下2821解直角三角形学案人教版.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下2821解直角三角形学案人教版.docx

1、 28.2.1 解直角三角形 学案 一、新课导入 1.课题导入 如图是意大利的比萨斜塔,设塔顶中心点为B,塔身中心线与垂直中心线的交点为A ,过B点向垂直中心线引垂线,垂足为C,在Rt△ABC中,∠C=90°,BC=5.2米,AB=54.5米,你能根据上述条件求出图中∠A的度数吗?这就是我们这节课要研究的问题. 2.学习目标 (1)知道解直角三角形的概念,理解直角三角形中除直角以外的五个元素之间的关系. (2)能综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形. 3.学习重、难点 重点:直角三角形中除直角以外的五个元素之间的关系,解直角三角形. 难点:合理选用

2、三角函数关系式解直角三角形. 二、分层学习 1.自学指导 (1)自学内容:教材P72~P73例1上面的内容. (2)自学时间:8分钟. (3)自学要求:完成探究提纲. (4)探究提纲: ①在直角三角形中,已知有一个角是直角,我们把由直角三角形中的已知元素求出其余未知元素的过程,叫做解直角三角形. ②在直角三角形中,除直角外的五个元素之间有哪些关系? 如图,在Rt△ABC中,∠C=90°,设∠A、∠B、∠C所对的边分别为a、b、c,则有: a.两锐角 互余 ,即∠A+∠B= 90 °. b.三边关系满足 勾股定理 ,即 a2+b2=c2 . c.边角关系:sinA= ,sinB= ; cosA=

3、 , cosB= ; tanA= , tanB= . ③已知直角三角形中不是直角的五个元素中的几个元素,才能求出其余所有未知元素?(提示:可从“确定一个直角三角形,至少需要哪些条件?”来思考) 已知其中两个元素(至少有一个是边). 2.自学:学生可结合自学指导进行自学. 3.助学 (1)师助生: ①明了学情:了解学生自学提纲的答题情况(特别是第②、③题). ②差异指导:根据学情进行个别指导或分类指导. (2)生助生:小组内相互交流、研讨、纠正错误. 4.强化 (1)直角三角形中除直角外的五个元素之间的关系(要板书出来). (2)直角三角形的可解条件:必须已知除直角外的两个元素(至少有一个是边)

4、 ①已知两边:a.两直角边;b.一直角边和斜边. ②已知一边和一锐角:a.一直角边和一锐角;b.斜边和一锐角. 第二层次学习 1.自学指导 (1)自学内容:教材P73例1、例2. (2)自学时间:8分钟. (3)自学方法:先独立解答,再同桌之间互评互纠. (4)自学参考提纲: ①在教材P73例1中,已知的元素是两条直角边AC、BC,需求出的未知元素是:斜边AB、锐角A、锐角B. 方法一:∵tanA = = ,∴∠A= 60 °,∠B=90°- ∠A = 30 °. ∵AC= ,BC= ,∴AB = . 方法二:∵AC= ,BC= ,∴由勾股定理可得AB= . sinA= = ,∴∠A= 6

5、0 °,∴∠B=90°-∠A = 30 °. 这里∠B的度数也可用三角函数来求,你会吗? ②比较上述解法,体会其优劣. ③在教材P73例2中,已知的元素是一直角边b和一锐角B,则要求的未知元素有直角边a、斜边c、锐角A. ④例2还有别的解法吗?请试一试,并留意你的答案与例题的答案是否存在误差. ⑤练习:在Rt△ABC中,∠C=90°,根据下列条件解直角三角形: a.c=20 ,b=20; b.∠B=60°,c=14; c.∠B=30°,a= . 2.自学:学生可结合自学指导进行自学. 3.助学 (1)师助生: ①明了学情:关注学生解直角三角形的思路是否清晰,是否会选择恰当的三角函数关系式. ②

6、差异指导:根据学情对学习有困难的学生进行个别或分类指导. (2)生助生:小组内相互交流、研讨. 4.强化:解直角三角形的思路:首先,明确已知什么,要求的元素有哪些;其次,合理选择三角函数关系式,并正确进行变形(所选的关系式必须要有两个已知元素);第三,尽可能选用题目的原始数据,以减少误差. 三、评价 1.学生自我评价:这节课你学到了哪些知识?还有哪些疑问? 2.教师对学生的评价: (1)表现性评价:从学生的学习态度、积极性、小组交流状况等方面进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思). 本课时以自主探究和小组讨论为主,以教师归纳讲解为辅,激发学生自主学习的兴趣和

7、能力.通过综合运用勾股定理及锐角三角函数等知识解直角三角形的过程,使学生进一步巩固和深化锐角三角函数和直角三角形知识的理解,培养学生数形结合的思想和分析问题、解决问题的能力. 评价作业 一、基础巩固(70分) 1.(40分)已知在Rt△ABC中,∠C=90°. (1)若a=4 ,b=2 ,则c= ;(2)若a=10,c=10 ,则∠B=45°; (3)若b=35,∠A=45°,则a=35;(4)若c=20,∠A=60°,则a= . 2.(10分)在△ABC中,AC=2,AB=3,∠A=30°,则△ABC的面积等于(B) A. B. C. D.3 3.(10分)如图,在Rt△ABC中,∠C=9

8、0°,AC=6,sinB= ,那么AB的长是 9 . 4.(10分)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号) 解:∵△ABD是等边三角形,∴∠B=60°. 在Rt△ABC中,AB=2,∠B=60°, ∴BC= = =4,AC=AB•tanB= . ∴△ABC的周长为2+ +4=6+ . 二、综合应用(20分) 5.(20分)在Rt△ABC中,∠C=90°,tanA= ,△ABC的周长为45cm,CD是斜边AB上的高,求CD的长.(精确到0.1 cm) 解:在Rt△ABC中,∠C=90°,tanA= = ,AB+AC+BC=45 cm, ∴AC=45× = (cm),sinA= . ∴CD=AC•sinA= × ≈6.9(cm). 三、拓展延伸(10分) 6.(10分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBC= ,求AD的长. 解:在Rt△BCD中,BC=AC=6,tan∠DBC= , ∴CD=BC•tan∠DBC=6× = . ∴AD=AC-CD=6- = . 20 × 20

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服