ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:492.50KB ,
资源ID:3002921      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3002921.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(哈尔滨市高三数学二轮复习专题能力提升训练十数列.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

哈尔滨市高三数学二轮复习专题能力提升训练十数列.doc

1、哈尔滨2013届高三数学二轮复习专题能力提升训练:数列本试卷分第卷(选择题)和第卷(非选择题)两部分满分150分考试时间120分钟第卷(选择题共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1设是等差数列,是其前项和,且,则下列结论错误的是( )A B C D 【答案】C21202年,意大利数学家斐波那契在他的书中给出了一个关于兔子繁殖的递推关系:,其中表示第个月的兔子的总对数,则的值为( )A13B21C34D55【答案】B3如果数列对任意满足,且,那么等于( )A1024B 512 C 510D 256【答案】A4 an

2、=,则等于( )A2B C2D1【答案】A5等差数列项的和等于( )ABCD【答案】B6在各项为负数的数列中,已知2,且,则是数列的( )A第3项B第4项C第5项D第6项 【答案】C7在数列中,若,且,则( )A2007B2008C2009D2010【答案】C8等差数列的公差,且,则此数列的通项公式是( )A()B()C()D()【答案】D9数列的前n项和为Sn,若,则当Sn取得最小值时n的值为( )A4或5B5或6C4D5【答案】C10已知等差数列的前n项和为An,等差数列的前n项和为Bn,且,则使为整数的所有n的值的个数为( )A1B2C3D4【答案】D11等差数列的前项和为,若( )A1

3、2B10C8D6【答案】C12在等差数列an中,a1=1,a7=4,数列bn是等比数列,且b1=6,b2=a3,则满足bna260,且,则=_【答案】616在等比数列an中,an1an,a2a86,a4a65,则_【答案】三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17已知数列的前项和,数列满足()求数列,通项公式;()设,求数列的前项和【答案】()由,当时,;当n2时,当N*时,又,即,可得,数列bn+1是以2为首项,以2为公比的等比数列,()由(1)得,由,得, 18定义数列如下:,。证明:(1)对于恒有成立; (2)当且时,有成立; (3)【答案】(

4、1) 故(2)下面先用数学归纳法证明当 则 故当时,成立综上所述,成立。又又由(1)得 故上述n个等式相乘即得(3) 又+由(1)知19在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数.()求a4、a5,并写出an的表达式;()令,证明,n=1,2,.【答案】()由已知得,. ()因为,所以. 又因为,所以 =. 综上,.20已知数列是以为公差的等差数列,数列是以为公比的等比数列.若数列的前项的和为,且,求整数的值;在

5、的条件下,试问数列中是否存在一项,使得恰好可以表示为该数列中连续项的和?请说明理由;若,(其中,且是的约数),求证:数列中每一项都是数列中的项.【答案】由题意知,所以由,得,解得,又为整数,所以=2.假设数列中存在一项,满足,因为, (*)又 ,所以,此与 (*)式矛盾.所以,这样的项不存在.由,得,则. 又,从而.因为,所以,又,故.又,且是的约数,所以是正整数,且.对于数列中任一项(这里只要讨论的情形),有 ,由于是正整数,所以一定是数列中的项.21已知数列满足,且。()求,的值;()猜想的通项公式,并用数学归纳法证明你的猜想。【答案】()由题意知将代入解得 同理可得 ()由()可猜想()证明:(1)当时,左边右边猜想成立。(2)假设当()时猜想成立,即 那么,由可得即当时猜想也成立。根据(1)和(2),可知猜想对任意都成立22设等差数列的前项和为,已知。(1)求数列的通项公式;(2)令,求数列的前10项和.K【答案】(1)设的公差为,由已知,得 解得(2)由(1)得:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服