ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:267.50KB ,
资源ID:2938327      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2938327.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2014年上海市高考数学试卷(文科)答案与解析.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2014年上海市高考数学试卷(文科)答案与解析.doc

1、2014年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。1(4分)(2014上海)函数y=12cos2(2x)的最小正周期是考点:二倍角的余弦;三角函数的周期性及其求法菁优网版权所有专题:三角函数的求值分析:由二倍角的余弦公式化简,可得其周期解答:解:y=12cos2(2x)=2cos2(2x)1=cos4x,函数的最小正周期为T=故答案为:点评:本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题2(4分)(2014上海)若复数z=1+2i,其中i是虚数单位,则(z+)=6

2、考点:复数代数形式的乘除运算菁优网版权所有专题:数系的扩充和复数分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可解答:解:复数z=1+2i,其中i是虚数单位,则(z+)=(1+2i)(12i)+1=14i2+1=2+4=6故答案为:6点评:本题考查复数代数形式的混合运算,基本知识的考查3(4分)(2014上海)设常数aR,函数f(x)=|x1|+|x2a|,若f(2)=1,则f(1)=3考点:函数的值菁优网版权所有专题:函数的性质及应用分析:利用f(x)=|x1|+|x2a|,f(2)=1,求出a,然后求解f(1)即可解答:解:常数aR,函数f(x)=|x1|+|x2a|,若f(

3、2)=1,1=|21|+|22a|,a=4,函数f(x)=|x1|+|x24|,f(1)=|11|+|124|=3,故答案为:3点评:本题考查函数值的求法,基本知识的考查4(4分)(2014上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=2考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:由题设中的条件y2=2px(p0)的焦点与椭圆+=1的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程解答:解:由题意椭圆+=1,故它的右焦点坐标是(2,0),又y2=2px(p0)的焦点与椭圆+=1的

4、右焦点重合,故得p=4,抛物线的准线方程为x=2故答案为:x=2点评:本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题5(4分)(2014上海)某校高一、高二、高三分别有学生1600名,1200名,800名为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共需抽取的学生数为70考点:分层抽样方法菁优网版权所有专题:概率与统计分析:根据分层抽样的定义,建立比例关系,即可得到结论解答:解:高一、高二、高三分别有学生1600名,1200名,800名,若高三抽取20名学生,设共需抽取的学生

5、数为x,则,解得x=90,则高一、高二共需抽取的学生数为9020=70,故答案为:70点评:本题主要考查分层抽样的应用,比较基础6(4分)(2014上海)若实数x,y满足xy=1,则x2+2y2的最小值为2考点:基本不等式菁优网版权所有专题:不等式的解法及应用分析:由已知可得y=,代入要求的式子,由基本不等式可得解答:解:xy=1,y=x2+2y2=x2+2=2,当且仅当x2=,即x=时取等号,故答案为:2点评:本题考查基本不等式,属基础题7(4分)(2014上海)若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为arcsin(结果用反三角函数值表示)考点:旋转体(圆柱、圆锥、圆台)菁优

6、网版权所有专题:空间位置关系与距离分析:由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与轴所成角的正弦值,进而可得母线与轴所成角解答:解:设圆锥母线与轴所成角为,圆锥的侧面积是底面积的3倍,=3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则sin=,=arcsin,故答案为:arcsin点评:本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键8(4分)(2014上海)在长方体中割去两个小长方体后的几何体的三视图如图所示,则切割掉的两个小长方体的体积之和等于24考点:由三视图求面积、体积菁优网版权

7、所有专题:空间位置关系与距离分析:由已知中的三视图,分别判断切割前后几何体的形状,并分别计算出切割前后几何体的体积,相减可得答案解答:解:由已知中的三视图,可知:大长方体的长,宽,高分别为:3,4,5,故大长方体的体积为:60,切去两个小长方体后的几何体是一个以主视图为底面,高为3的柱体,其底面面积为452222=12,故切去两个小长方体后的几何体的体积为:123=36,故切割掉的两个小长方体的体积之和为:6036=24,故答案为:24点评:本题考查的知识点是由三视图求体积,其中根据已知中的三视图分析出几何体的形状是解答的关键9(4分)(2014上海)设f(x)=,若f(0)是f(x)的最小值

8、,则a的取值范围为(,2考点:分段函数的应用菁优网版权所有专题:函数的性质及应用分析:分别由f(0)=a,x2,ax+综合得出a的取值范围解答:解:当x=0时,f(0)=a,由题意得:ax+,又x+2=2,a2,故答案为:(,2点评:本题考察了分段函数的应用,基本不等式的性质,是一道基础题10(4分)(2014上海)设无穷等比数列an的公比为q,若a1=(a3+a4+an),则q=考点:极限及其运算菁优网版权所有专题:等差数列与等比数列分析:由已知条件推导出a1=,由此能求出q的值解答:解:无穷等比数列an的公比为q,a1=(a3+a4+an)=(a1a1q)=,q2+q1=0,解得q=或q=

9、(舍)故答案为:点评:本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用11(4分)(2014上海)若f(x)=,则满足f(x)0的x的取值范围是(0,1)考点:指、对数不等式的解法;其他不等式的解法菁优网版权所有专题:不等式的解法及应用分析:直接利用已知条件转化不等式求解即可解答:解:f(x)=,若满足f(x)0,即,y=是增函数,的解集为:(0,1)故答案为:(0,1)点评:本题考查指数不等式的解法,函数的单调性的应用,考查计算能力12(4分)(2014上海)方程sinx+cosx=1在闭区间0,2上的所有解的和等于考点:两角和与差的正弦函数;正弦函数的图象菁

10、优网版权所有专题:三角函数的求值分析:由三角函数公式可得sin(x+)=,可知x+=2k+,或x+=2k+,kZ,结合x0,2,可得x值,求和即可解答:解:sinx+cosx=1,sinx+cosx=,即sin(x+)=,可知x+=2k+,或x+=2k+,kZ,又x0,2,x=,或x=,+=故答案为:点评:本题考查两角和与差的三角函数公式,属基础题13(4分)(2014上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示)考点:古典概型及其概率计算公式菁优网版权所有专题:概率与统计分析:要求在未来的连续10天中随

11、机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案解答:解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),选择的3天恰好为连续3天的概率是,故答案为:点评:本题考查古典概型以及概率计算公式,属基础题14(4分)(2014上海)已知曲线C:x=,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围

12、为2,3考点:直线与圆的位置关系菁优网版权所有专题:直线与圆分析:通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可解答:解:曲线C:x=,是以原点为圆心,2 为半径的圆,并且xP2,0,对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,m=2,3故答案为:2,3点评:本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15(5分)(2014上海)设a,bR,则“a+b4”是“a2且b2”的()A充分非必要条件B必要非

13、充分条件C充要条件D既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断菁优网版权所有专题:简易逻辑分析:根据不等式的性质,利用充分条件和必要条件的定义进行判定解答:解:当a=5,b=0时,满足a+b4,但a2且b2不成立,即充分性不成立,若a2且b2,则必有a+b4,即必要性成立,故“a+b4”是“a2且b2”的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础16(5分)(2014上海)已知互异的复数a,b满足ab0,集合a,b=a2,b2,则a+b=()A2B1C0D1考点:集合的相等菁优网版权所有专题:集合分析:根据集

14、合相等的条件,得到元素关系,即可得到结论解答:解:根据集合相等的条件可知,若a,b=a2,b2,则 或 ,由得,ab0,a0且b0,即a=1,b=1,此时集合1,1不满足条件由得,若b=a2,a=b2,则两式相减得a2b2=ba,即(ab)(a+b)=(ab),互异的复数a,b,ab0,即a+b=1,故选:D点评:本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论17(5分)(2014上海)如图,四个边长为1的小正方形排成一个大正方形,AB是大正方形的一条边,Pi(i=1,2,7)是小正方形的其余顶点,则(i=1,2,7)的不同值的个数为()A7B5C3D

15、1考点:平面向量数量积的运算菁优网版权所有专题:计算题;平面向量及应用分析:建立适当的平面直角坐标系,利用坐标分别求出数量积,由结果可得答案解答:解:如图建立平面直角坐标系,则A(0,0),B(0,2),P1(0,1),P2(1,0),P3(1,1),P4(1,2),P5(2,0),P6(2,1),P7(2,2),=(0,1),=(1,0),=(1,1),=(1,2),=(2,0),=(2,1),=(2,2),=2,=0,=2,=4,=0,=2,=4,(i=1,2,7)的不同值的个数为3,故选C点评:本题考查平面向量的数量积运算,属基础题18(5分)(2014上海)已知P1(a1,b1)与P2

16、(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A无论k,P1,P2如何,总是无解B无论k,P1,P2如何,总有唯一解C存在k,P1,P2,使之恰有两解D存在k,P1,P2,使之有无穷多解考点:一次函数的性质与图象菁优网版权所有专题:函数的性质及应用;直线与圆分析:判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可解答:解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,k=,即a1a2,并且b1=ka1+1,b2=ka2+1,a2b1

17、a1b2=ka1a2ka1a2+a2a1=a2a1,b2b1得:(a1b2a2b1)x=b2b1,即(a1a2)x=b2b1方程组有唯一解故选:B点评:本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解额指数的应用三、解答题(共5小题,满分74分)19(12分)(2014上海)底面边长为2的正三棱锥PABC,其表面展开图是三角形P1P2P3,如图,求P1P2P3的各边长及此三棱锥的体积V考点:棱柱、棱锥、棱台的体积菁优网版权所有专题:空间位置关系与距离分析:利用侧面展开图三点共线,判断P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积解答:解:根据题意可得:P

18、1,B,P2共线,ABP1=BAP1=CBP2,ABC=60,ABP1=BAP1=CBP2=60,P1=60,同理P2=P3=60,P1P2P3是等边三角形,PABC是正四面体,P1P2P3的边长为4,VPABC=点评:本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法20(14分)(2014上海)设常数a0,函数f(x)=(1)若a=4,求函数y=f(x)的反函数y=f1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由考点:反函数;函数奇偶性的判断菁优网版权所有专题:函数的性质及应用分析:(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若

19、为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决解答:解:(1)a=4,调换x,y的位置可得,x(,1)(1,+)(2)若f(x)为偶函数,则f(x)=f(x)对任意x均成立,=,整理可得a(2x2x)=02x2x不恒为0,a=0,此时f(x)=1,xR,满足条件;若f(x)为奇函数,则f(x)=f(x)对任意x均成立,=,整理可得a21=0,a=1,a0,a=1,此时f(x)=,满足条件;综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数点评:本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题21(14分)(2014上海)如图,某公司要在A、B两

20、地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为和(1)设计中CD是铅垂方向,若要求2,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得=38.12,=18.45,求CD的长(结果精确到0.01米)考点:解三角形的实际应用菁优网版权所有专题:解三角形分析:(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论(2)利用正弦定理,建立方程关系,即可得到结论解答:解:(1)设CD的长为x米,则tan=,tan=,0,tantan20,tan,即=,解得028.

21、28,即CD的长至多为28.28米(2)设DB=a,DA=b,CD=m,则ADB=180=123.43,由正弦定理得,即a=,m=26.93,答:CD的长为26.93米点评:本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键22(16分)(2014上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记=(ax1+by1+c)(ax2+by2+c),若0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线(1)求证:点A(1,2),B(1

22、,0)被直线x+y1=0分隔;(2)若直线y=kx是曲线x24y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线考点:直线的一般式方程菁优网版权所有专题:直线与圆分析:(1)把A、B两点的坐标代入=(ax1+by1+c)(ax2+by2+c),再根据0,得出结论(2)联立 可得 (14k2)x2=1,根据此方程无解,可得14k20,从而求得k的范围(3)设点M(x,y),与条件求得曲线E的方程为x2+(y2)2x2=1 由于y轴为x=0,显然与方程联立无解把P1、P2的坐标代入x=0,由=1(

23、1)=10,可得x=0是一条分隔线解答:解:(1)把点(1,2)、(1,0)分别代入x+y1可得=(1+21)(11)=40,点(1,2)、(1,0)被直线 x+y1=0分隔(2)联立 可得 (14k2)x2=1,根据题意,此方程无解,故有14k20,|k|当|k|时,对于直线y=kx,曲线x24y2=1上的点(1,0)和(1,0)满足=k20,即点(1,0)和(1,0)被y=kx分隔故实数k的取值范围是(,+)(3)设点M(x,y),则 |x|=1,故曲线E的方程为x2+(y2)2x2=1 对任意的y0,(0,y0)不是上述方程的解,即y轴与曲线E没有公共点 又曲线E上的点(1,2)、(1,

24、2)对于y轴(x=0)满足=1(1)=10,即点(1,2)和(1,2)被y轴分隔,所以y轴为曲线E的分隔线点评:本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题23(18分)(2014上海)已知数列an满足anan+13an,nN*,a1=1(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)若an是等比数列,且am=,求正整数m的最小值,以及m取最小值时相应an的公比;(3)若a1,a2,a100成等差数列,求数列a1,a2,a100的公差的取值范围考点:数列的求和;数列递推式菁优网版权所有专题:等差数列与等比数列分析:(1)由题意可得:,代入解出即可;(2)设公比为q,由已知可得,由于,可得而,可得,再利用对数的运算法则和性质即可得出(3)设公差为d,由已知可得31+(n2)d,其中2n100,即,解出即可解答:解;(1)由题意可得:,;又,3x27综上可得:3x6(2)设公比为q,由已知可得,又,因此,m=1logq1000=1=7.28m的最小值是8,因此q7=,=(3)设公差为d,由已知可得1+nd31+(n1)d即,令n=1,得当2n99时,不等式即,综上可得:公差d的取值范围是点评:本题综合考查了等差数列与等比数列的通项公式、不等式的性质、对数的运算法则等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服