ImageVerifierCode 换一换
格式:PPTX , 页数:17 ,大小:161.24KB ,
资源ID:2928695      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2928695.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(解直角三角形锐角三角函数课件省公开课一等奖新名师优质课比赛一等奖课件.pptx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

解直角三角形锐角三角函数课件省公开课一等奖新名师优质课比赛一等奖课件.pptx

1、解直角三角形解直角三角形第1页在直角三角形中,除了直角外还有哪些边角元素?ABCbac(1)A,B;(2)a,b,c(1 1)三边关系:三边关系:(勾股定理)(2 2)锐角关系)锐角关系A+B=90A+B=90(3 3)边角关系)边角关系sinA=sinA=A对边对边斜边斜边cosA=cosA=A邻边邻边斜边斜边tanA=tanA=A对边对边A邻边邻边cotA=cotA=A邻边邻边A对边对边假如把左式中A换成B呢?第2页解直角三角形解直角三角形由直角三角形中除直角外已知元素,求出由直角三角形中除直角外已知元素,求出全部全部未知元素过程未知元素过程利用三边关系,锐角关系,边角关系,利用三边关系,

2、锐角关系,边角关系,知道其中知道其中2个元素(个元素(最少有最少有1个是边个是边,)就能够,)就能够求出其余求出其余3个元素。个元素。第3页例例1 1、在、在ABCABC中,中,C C 为直角,为直角,A A,B B,C C所对应边分别为所对应边分别为a a、b b、c c,且,且c=287.4c=287.4,B=426B=426,解这个直角三角形。,解这个直角三角形。分析分析:(:(1)未知元素是)未知元素是A、a、b;(;(2)A最轻易求出,最轻易求出,A=90BACBabc287.4426?第4页例例1 1、在、在ABCABC中,中,C C 为直角,为直角,A A,B B,C C所对应边

3、分别为所对应边分别为a a、b b、c c,且,且c=287.4c=287.4,B=426B=426,解这个直角三角形。,解这个直角三角形。分析分析:(:(1)未知元素是)未知元素是A、a、b;(;(2)A最轻易求出,最轻易求出,A=90B(3)由)由cosB=能够求出能够求出a由由 sinB=能够求出能够求出 bACBabc287.4426?第5页例例1 1、在、在ABCABC中,中,C C 为直角,为直角,A A,B B,C C所对应边分别为所对应边分别为a a、b b、c c,且,且c=287.4c=287.4,B=426B=426,解这个直角三角形。,解这个直角三角形。分析:(分析:(

4、1)未知元素是)未知元素是A、a、b;(;(2)A最轻易求出,最轻易求出,A=90B(3)由)由cosB=能够求出能够求出a由由 sinB=能够求出能够求出 b解:(解:(1)A=90426(2)cosB=a=ccosB=287.4cos426=287.40.7420213.3(3)sinB=b=csinB=287.4sin426=287.40.67.4192.7ACBabc287.4426=4754第6页例例2。在。在RtABC中中a=104.0,b=20.49,解这个三角形。,解这个三角形。解解:(1)tanA=则可得:则可得:A=7851ACBabc104.020.49?第7页例例2。在

5、在RtABC中中a=104.0,b=20.49,解这个三角形。,解这个三角形。解解:(1)tanA=则可得:则可得:A=7851(2)B=907851=1109(3)sinA=c=ACBabc104.020.49?7851第8页解直角三角形思索方法是:解直角三角形思索方法是:有斜有斜(斜边)用(斜边)用弦弦(正、余弦),(正、余弦),无斜无斜用用切(切(正、余切);正、余切);宁乘勿除宁乘勿除,尽可能采取原始数据,以图辅助,尽可能采取原始数据,以图辅助,启迪思维。启迪思维。意思:当已知或求解中有斜边时,就用正弦意思:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求或余

6、弦;无斜边时,就用正切或余切;当所求元素既可用乘法又可用除法时,则用乘法,元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求不用除法;既可由已知数据又可用中间数据求得时,则取原始数据,防止用中间数据。得时,则取原始数据,防止用中间数据。第9页课堂练习:课堂练习:在在RtABC中中,C=90,解这个直角三角形。解这个直角三角形。CBA第10页课堂练习课堂练习1。在。在RtABC中,中,(1)假如已知)假如已知A,c,则则a=b=B=(2)假如已知)假如已知a,B,则则 b=c=A=(3)假如已知)假如已知A,b,则则a=c=B=(4)假如已知)假如已知a,b,则则 c

7、A=B=CBAabc第11页课堂练习课堂练习1。在。在RtABC中,中,(1)假如已知)假如已知A,c,则则a=b=B=(2)假如已知)假如已知a,B,则则 b=c=A=(3)假如已知)假如已知A,b,则则a=c=B=(4)假如已知)假如已知a,b,则则 c=A=B=CBAabc第12页课堂练习课堂练习1。在。在RtABC中,中,(1)假如已知)假如已知A,c,则则a=b=B=(2)假如已知)假如已知a,B,则则 b=c=A=(3)假如已知)假如已知A,b,则则a=c=B=(4)假如已知)假如已知a,b,则则 c=A=B=CBAabc第13页课堂练习课堂练习1。在。在RtABC中,中,(1)

8、假如已知)假如已知A,c,则则a=b=B=(2)假如已知)假如已知a,B,则则 b=c=A=(3)假如已知)假如已知A,b,则则a=c=B=(4)假如已知)假如已知a,b,则则 c=A=B=CBAabc第14页直角三角形解法:直角三角形解法:已知一条直角边和一个锐角(如已知一条直角边和一个锐角(如a,A)B=90A,或或已知斜边和一个锐角(如已知斜边和一个锐角(如c,A),其解法为:),其解法为:B=90A,或或已知两直角边(已知两直角边(a,b)其解法为:)其解法为:由由得出得出A,B=90A已知斜边和一直角边(如已知斜边和一直角边(如c,a ),其解法为:),其解法为:由由得出得出A,B=

9、90A第15页(A、B)一、填空一、填空1、若、若tanA=2,则,则cot(90-A)=_2、为锐角,且为锐角,且tan=1,则,则=_,cos=_3、在、在RtABC中,中,C=90,AB=13,AC=12则则sinA=_,cotA=_4、tan42tan45tan48=_二、计算二、计算1、cos245+tan60sin602、2sin30+tan60cos30-3cot 260+sin90第16页C、D一、填空一、填空1、已知、已知为锐角,且为锐角,且tan=,则,则=_2、求值、求值tan1tan2tan3 tan87tan88tan89=_3、已知、已知sin2=则则=_ 二、计算二、计算 tan60+cot454sin30第17页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服