ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:96.38KB ,
资源ID:2776928      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2776928.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(正弦定理和余弦定理专题及解析.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正弦定理和余弦定理专题及解析.doc

1、正弦定理和余弦定理教学目标掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知 识 梳 理1.正弦、余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,R为ABC外接圆半径,则定理正弦定理余弦定理公式2Ra2b2c22bccos A;b2c2a22cacos B;c2a2b22abcos C常见变形(1)a2Rsin A,b2Rsin B,c2Rsin C;(2)sin A,sin B,sin C;(3)abcsin Asin Bsin C;(4)asin Bbsin A,bsin Ccsin B,asin Ccsin Acos A;cos B;cos C2.SABCabsin

2、 Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R,r. 3.在ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式absin Absin Aabab解的个数一解两解一解一解无解诊 断 自 测1.判断正误(在括号内打“”或“”)(1)三角形中三边之比等于相应的三个内角之比.()(2)在ABC中,若sin Asin B,则AB.()(3)在ABC的六个元素中,已知任意三个元素可求其他元素.()(4)当b2c2a20时,ABC为锐角三角形;当b2c2a20时,ABC为直角三角形;当b2c2a20时,三角形ABC不一定为锐角三角形.答案(1)

3、2)(3)(4)(5)2.(2016全国卷)ABC的内角A,B,C的对边分别为a,b,c.已知a,c2,cos A,则b()A. B. C.2 D.3解析由余弦定理,得5b2222b2,解得b3,故选D.答案D3.(2017郑州预测)在ABC中,角A,B,C所对的边分别为a,b,c,若,则cos B()A. B. C. D.解析由正弦定理知1,即tan B,由B(0,),所以B,所以cos Bcos,故选B.答案B4.在ABC中,A60,AB2,且ABC的面积为,则BC的长为()A. B. C.2 D.2解析因为SABACsin A2AC,所以AC1,所以BC2AB2AC22ABACcos

4、603,所以BC.答案B5.在ABC中,acos Abcos B,则这个三角形的形状为_.解析由正弦定理,得sin Acos Asin Bcos B,即sin 2Asin 2B,所以2A2B或2A2B,即AB或AB,所以这个三角形为等腰三角形或直角三角形.答案等腰三角形或直角三角形考点一利用正、余弦定理解三角形【例1】 (1)在ABC中,已知a2,b,A45,则满足条件的三角形有()A.1个 B.2个 C.0个 D.无法确定(2)(2016天津卷)在ABC中,若AB,BC3,C120,则AC()A.1 B.2 C.3 D.4(3)(2015广东卷)设ABC的内角A,B,C的对边分别为a,b,c

5、若a,sin B,C,则b_.解析(1)bsin A,bsin Aab.满足条件的三角形有2个.(2)在ABC中,设A,B,C所对的边分别为a,b,c.则由c2a2b22abcos C,得139b23b,即b23b40,解得b1,因此AC1.(3)因为sin B且B(0,),所以B或B.又C,BC0,sin A1,即A.答案B【迁移探究1】 将本例条件变为“若2sin Acos Bsin C”,那么ABC一定是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等边三角形解析法一由已知得2sin Acos Bsin Csin(AB)sin Acos Bcos Asin B,即sin(A

6、B)0,因为AB0),由余弦定理可得cos C0,又C(0,),C,ABC为钝角三角形.答案C【迁移探究3】 将本例条件变为“若a2b2c2ab,且2cos Asin Bsin C”,试确定ABC的形状.解法一利用边的关系来判断:由正弦定理得,由2cos Asin Bsin C,有cos A.又由余弦定理得cos A,即c2b2c2a2,所以a2b2,所以ab.又a2b2c2ab.2b2c2b2,所以b2c2,bc,abc.ABC为等边三角形.法二利用角的关系来判断:ABC180,sin Csin(AB),又2cos Asin Bsin C,2cos Asin Bsin Acos Bcos A

7、sin B,sin(AB)0,又A与B均为ABC的内角,所以AB.又由a2b2c2ab,由余弦定理,得cos C,又0C180,所以C60,ABC为等边三角形.考点三和三角形面积有关的问题【例3】 (2016全国卷)ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos Bbcos A)c.(1)求C; (2)若c,ABC的面积为,求ABC的周长.解(1)由已知及正弦定理得,2cos C(sin Acos Bsin Bcos A)sin C,2cos Csin(AB)sin C,故2sin Ccos Csin C.由C(0,)知sin C0,可得cos C,所以C.(2)由已

8、知,absin C,又C,所以ab6,由已知及余弦定理得,a2b22abcos C7,故a2b213,从而(ab)225.所以ABC的周长为5.【训练2】 (2017日照模拟)在ABC中,角A,B,C的对边分别为a,b,c,满足(2ab)cos Cccos B0.(1)求角C的值;(2)若三边a,b,c满足ab13,c7,求ABC的面积.解(1)根据正弦定理,(2ab)cos Cccos B0可化为(2sin Asin B)cos Csin Ccos B0.整理得2sin Acos Csin Bcos Csin Ccos Bsin(BC)sin A.0A,sin A0,cos C.又0C,C.

9、2)由(1)知cos C,又ab13,c7,由余弦定理得c2a2b22abcos C(ab)23ab1693ab49,解得ab40.SABCabsin C40sin10.基础巩固题组(建议用时:40分钟)一、选择题1.(2017哈尔滨模拟)在ABC中,AB,AC1,B30,ABC的面积为,则C()A.30 B.45 C.60 D.75解析法一SABCABACsin A,即1sin A,sin A1,由A(0,180),A90,C60.故选C.法二由正弦定理,得,即,sin C,又C(0,180),C60或C120.当C120时,A30,SABC(舍去).而当C60时,A90,SABC,符合条

10、件,故C60.故选C.答案C2.在ABC中,角A,B,C对应的边分别为a,b,c,若A,a2,b,则B等于()A. B.C.或 D.解析A,a2,b,由正弦定理可得,sin Bsin A.A,B.答案D3.(2017成都诊断)在ABC中,cos2(a,b,c分别为角A,B,C的对边),则ABC的形状为()A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析因为cos2,所以2cos211,所以cos B,所以,所以c2a2b2.所以ABC为直角三角形.答案B4.ABC的内角A,B,C的对边分别为a,b,c,则“ab”是“cos 2Acos 2B”的()A.充分不必要条件

11、 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析因为在ABC中,absin Asin Bsin2Asin2B2sin2A2sin2B12sin2A12sin2Bcos 2Acos 2B.所以“ab”是“cos 2Acos 2B”的充分必要条件.答案C5.(2016山东卷)在ABC中,角A,B,C的对边分别是a,b,c,已知bc,a22b2(1sin A),则A()A. B. C. D.解析在ABC中,由bc,得cos A,又a22b2(1sin A),所以cos Asin A,即tan A1,又知A(0,),所以A,故选C.答案C二、填空题6.(2015重庆卷)设ABC的内角

12、A,B,C的对边分别为a,b,c,且a2,cos C,3sin A2sin B,则c_.解析由3sin A2sin B及正弦定理,得3a2b,又a2,所以b3,故c2a2b22abcos C4922316,所以c4.答案47.(2017江西九校联考)在ABC中,角A,B,C所对的边分别为a,b,c,若角A,B,C依次成等差数列,且a1,b,则SABC_.解析因为角A,B,C依次成等差数列,所以B60.由正弦定理,得,解得sin A,因为0A180,所以A30或150(舍去),此时C90,所以SABCab.答案8.(2016北京卷)在ABC中,A,ac,则_.解析在ABC中,a2b2c22bcc

13、os A,将A,ac代入,可得(c)2b2c22bc,整理得2c2b2bc.c0,等式两边同时除以c2,得2,可解得1.答案1三、解答题9.(2015天津卷)在ABC中,内角A,B,C所对的边分别为a,b,c.已知ABC的面积为3,bc2,cos A.(1)求a和sin C的值;(2)求cos的值.解(1)在ABC中,由cos A,可得sin A.由SABCbcsin A3,得bc24,又由bc2,解得b6,c4.由a2b2c22bccos A,可得a8.由,得sin C.(2)coscos 2Acos sin 2Asin(2cos2A1)2sin Acos A.10.(2015全国卷)在AB

14、C中,D是BC上的点,AD平分BAC,BD2DC.(1)求;(2)若BAC60,求B.解(1)由正弦定理得,.因为AD平分BAC,BD2DC,所以.(2)因为C180(BACB),BAC60,所以sin Csin(BACB)cos Bsin B.由(1)知2sin Bsin C,所以tan B,即B30.能力提升题组(建议用时:20分钟)11.(2017郑州调研)在ABC中,sin2Asin2Bsin2Csin Bsin C,则A的取值范围是()A. B. C. D.解析由已知及正弦定理有a2b2c2bc,由余弦定理可知a2b2c22bccos A,于是b2c22bccos Ab2c2bc,c

15、os A,在ABC中,A(0,).由余弦函数的性质,得0A.答案C12.在ABC中,三个内角A,B,C所对的边分别为a,b,c,若SABC2,ab6,2cos C,则c()A.2 B.4 C.2 D.3解析2cos C,由正弦定理,得sin Acos Bcos Asin B2sin Ccos C,sin(AB)sin C2sin Ccos C,由于0C,sin C0,cos C,C,SABC2absin Cab,ab8,又ab6,解得或c2a2b22abcos C416812,c2,故选C.答案C13.(2015全国卷)在平面四边形ABCD中,ABC75,BC2,则AB的取值范围是_.解析如图

16、所示,延长BA与CD相交于点E,过点C作CFAD交AB于点F,则BFABBE.在等腰三角形CBF中,FCB30,CFBC2,BF.在等腰三角形ECB中,CEB30,ECB75,BECE,BC2,BE.AB.答案(,)14.设f(x)sin xcos xcos2.(1)求f(x)的单调区间;(2)在锐角ABC中,角A,B,C的对边分别为a,b,c.若f0,a1,求ABC面积的最大值.解(1)由题意知f(x)sin 2x.由2k2x2k,kZ, 可得kxk,kZ;由2k2x2k,kZ, 可得kxk,kZ.所以f(x)的单调递增区间是(kZ);单调递减区间是(kZ).(2)由fsin A0,得sin A,由题意知A为锐角,所以cos A.由余弦定理a2b2c22bccos A,可得1bcb2c22bc,即bc2,且当bc时等号成立.因此bcsin A.所以ABC面积的最大值为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服