ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:489.04KB ,
资源ID:2685789      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2685789.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文([考研数学]概率论与数理统计复习题.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

[考研数学]概率论与数理统计复习题.doc

1、(完整版)考研数学概率论与数理统计复习题概率论与数理统计复习题一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8,9, 12 。现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率.解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B A1)0。08,P(B A2)0.09,P(B| A3)0。12。由全概率公式P(B) = P(A1)

2、P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B A3) = 0。09由贝叶斯公式:P(A1 B)P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2,2%,4% 。若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少? 【 0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(1)取出的零件是一等品的概率;(2)在先取的是一等品的条

3、件下,后取的仍是一等品的条件概率。解:设事件=从第i箱取的零件,=第i次取的零件是一等品(1)P()=P()P()+P()P()=(2)P()=,则P()= 0。485二、连续型随机变量的综合题例:设随机变量X的概率密度函数为求:(1)常数;(2)EX;(3)P1X3;(4)X的分布函数F(x)解:(1)由得到1/2(2)(3)(4)当x0时,当0x2时,当x2时,F(x)=1故练习:已知随机变量X的密度函数为且E(X)=7/12。求:(1)a , b ;(2)X的分布函数F(x) 练习:已知随机变量X的密度函数为求:(1)X的分布函数F(x) ;(2)P0.3X2三、离散型随机变量和分布函数

4、例:设X的分布函数F(x)为: , 则X的概率分布为( )。分析:其分布函数的图形是阶梯形,故x是离散型的随机变量 答案: P(X=-1)=0.4,P(X=1)=0.4,P(X=3)=0.2。练习:设随机变量X的概率分布为P(X=1)=0。2,P(X=2)=0。3,P(X=3)=0。5,写出其分布函数F(x)。 答案:当x1时,F(x)=0; 当1x2时,F(x)=0.2; 当2x3时,F(x)=0。5;当3x时,F(x)=1 四、二维连续型随机向量例:设与相互独立,且服从的指数分布,服从的指数分布,试求:(1)联合概率密度与联合分布函数;(2);(3)在取值的概率.解:(1)依题知 所以联合

5、概率密度为当时,有所以联合分布函数 (2); (3)练习:设二元随机变量(X,Y)的联合密度是求:(1)关于X的边缘密度函数f X(x);(2)PX50,Y50五、二维离散型随机向量设随机变量X与Y相互独立,下表列出了二维随机向量(X,Y)的联合分布律及关于X和关于Y的边缘分布律中的部分数值,试将其他数值填入表中的空白处. 答案: 六、协差矩阵例:已知随机向量(X,Y)的协差矩阵V为计算随机向量(XY, XY)的协差矩阵解:DX=4, DY=9, COV(X,Y)=6D(XY)= DX + DY +2 COV(X,Y)=25D(X-Y) = DX + DY -2 COV(X,Y)=1COV(X

6、Y, XY)=DXDY=5故(XY, XY)的协差矩阵练习:随机向量(X,Y)服从二维正态分布,均值向量及协差矩阵分别为计算随机向量(9XY, XY)的协差矩阵解:E(9X+Y)= 9EX+ E Y91+2E(XY)= EXE Y12D(9XY)=81DX + DY +18 COV(X,Y)=8112181222D(XY)= DX + DY 2 COV(X,Y)=1221222COV(9XY, XY)=9DX-DY8 COV(X,Y)= 91281222然后写出它们的矩阵形式(略)七、随机变量函数的密度函数例:设XU(0,2),则Y=在(0,4)内的概率密度( )。 答案 填:解:XU(0,2

7、) , ,求导出= ()练习:设随机变量X在区间1,2上服从均匀分布,求Y=的概率密度f(y)。答案:当时,f(y)=,当y在其他范围内取值时,f(y)=0.八、中心极限定理例:设对目标独立地发射400发炮弹,已知每一发炮弹地命中率等于0。2.请用中心极限定理计算命中60发到100发的概率。解:设X表示400发炮弹的命中颗数,则X服从B(400,0.2),EX=80,DX=64,由中心极限定理:X服从正态分布N(80,64)P60X100=P2。5(X-80)/82。5=2(2.5)10.9876练习:袋装食盐,每袋净重为随机变量,规定每袋标准重量为500克,标准差为10克,一箱内装100袋,

8、求一箱食盐净重超过50250克的概率。九、最大似然估计例:设总体X的概率密度为 其中未知参数,是取自总体的简单随机样本,用极大似然估计法求的估计量。解:设似然函数对此式取对数,即:且令可得,此即的极大似然估计量。例:设总体的概率密度为 据来自总体的简单随机样本,求未知参数的最大似然估计量。解:由得总体的样本的似然函数 再取对数得: 再求对的导数:令,得所以未知参数的最大似然估计量为。练习:设总体X的密度函数为X1,X2,,Xn是取自总体X的一组样本,求参数的最大似然估计十、区间估计总体X服从正态分布N(,2), X1,X2,Xn为X的一个样本 1:2已知,求的置信度为1置信区间2:2未知,求的

9、置信度为1-置信区间3:求2置信度为1-的置信区间例:设某校学生的身高服从正态分布,今从该校某班中随机抽查10名女生,测得数据经计算如下: 。求该校女生平均身高的95的置信区间。解: ,由样本数据得查表得:t0.05(?)=2.2622,故平均身高的95的置信区间为例:从总体X服从正态分布N(,2)中抽取容量为10的一个样本,样本方差S20.07,试求总体方差2的置信度为0。95的置信区间。解:因为,所以的95%的置信区间为:, 其中S20.07, ,所以=(0。033,0.233)例:已知某种材料的抗压强度, 现随机地抽取10个试件进行抗压试验, 测得数据如下: 482, 493, 457,

10、 471, 510, 446, 435, 418, 394, 469. (1)求平均抗压强度的点估计值;(2)求平均抗压强度的95的置信区间;(3)若已知=30, 求平均抗压强度的95的置信区间;(4)求的点估计值;(5)求的95的置信区间;解: (1)0(2) 因为, 故参数的置信度为0.95的置信区间是:, 经计算,s = 35.276, n =10,查自由度为9的分位数表得, ,故=432.30, 482。70(3) 若已知=30, 则平均抗压强度的95的置信区间为:=438。90,476.09(4) =S2=1 240.28(5) 因为,所以的95的置信区间为:,其中S2=1 240.

11、28, ,所以=586.79,4134.27十一、假设检验1 已知方差2,关于期望的假设检验2 未知方差2,关于期望的假设检验3 未知期望,关于方差2的假设检验例:已知某铁水含碳量在正常情况下服从正态分布N(4。55,0。112),现在测定了9炉铁水,含碳量平均数,样本方差S 20.0169。若总体方差没有变化,即20.121,问总体均值有无显著变化?(0。05)解:原假设H0:4。55统计量,当H0成立时,U服从N(0,1)对于0。05,U0.025=1。96故拒绝原假设,即认为总体均值有显著变化练习:某厂生产某种零件,在正常生产的情况下,这种零件的轴长服从正态分布,均值为0.13厘米。若从

12、某日生产的这种零件中任取10件,测量后得厘米,S=0。016厘米.问该日生产得零件得平均轴长是否与往日一样?(0.05)【 不一样 】例:设某厂生产的一种钢索, 其断裂强度kg/cm2服从正态分布. 从中选取一个容量为9的样本, 得 kg/cm2. 能否据此认为这批钢索的断裂强度为800 kg/cm2 ()。解: H0:u=800.采用统计量U=其中=40, u0=800, n=9, ,查标准正态分布表得=1。96|U =, U 96)=1P(X 96)=1-()=0.023,即 ()=0。977,查表得=2,则 =12,即且XN(72,144),故P(60X84)=P(-11)=2(1)1=0.68210

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服