ImageVerifierCode 换一换
格式:DOC , 页数:39 ,大小:597.97KB ,
资源ID:2653304      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2653304.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(分数的巧算教师版.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

分数的巧算教师版.doc

1、分数的速算与巧算(一)分数巧算(求和)分数求和的常用方法:1、公式法,直接运用一些公式来计算,如等差数列求和公式等。2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。典型例题一、公式法:计算:+分析:这道题中相邻两个加数之间相差,成等差数列,我们可以运用等差数列求和公式:(首项+末项)项数2来计算。+=()

2、20072=二、图解法:计算: 分析:解法一,先画出线段图:从图中可以看出: =1=解法二:观察算式,可以发现后一个加数总是前一个加数的一半。因此,只要添上一个加数,就能凑成,依次向前类推,可以求出算式之和。 = ()= (+)= 2=解法三:由于题中后一个加数总是前一个加数的一半,根据这一特点,我们可以把原式扩大2倍,然后两式相减,消去一部分。设x= 那么,2x=( )2 =1+ 用得2xx=1+ ( )x=所以, =三、裂项法1、计算:+分析:由于每个分数的分子均为1,先分解分母去找规律:2=12,6=23,12=34,20=45,30=56,110=1011,这些分母均为两个连续自然数的

3、乘积。再变数型:因为=1,=,=,=-。这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。+=1-=1=2、计算:分析:因为=1,=,=,=。所以,我们可以将题中的每一个加数都扩大4倍后,再分裂成两个数的差进行简便计算。=()4=(1)4=(1)4=3、计算:21分析:因为=4=4=4(1), =4=4=4(), =4=4=4(),=4=4=4().所以,先用裂项法求出分数串的和,使计算简便。21=214(1+)=212(1)=194、计算:分析:仔细观察后发现,每个加数的分子均比分母少1.这样可变形为:=1=1,=1=1,=1=1, =1=1,=1=1.

4、然后再裂项相消。=(1)(1)(1)(1)(1)=199()=99()=99(1)=995、计算:1+分析:可以看出,第一项的分母为1,第二项的分母为两个数相加,依此类推,最后一个分母是100个数相加且都是等差数列。这样,利用等差数列求和公式,或利用分数基本性质,变分母为两个数相乘。再裂项求和。解法一:1+=+=2(1)=解法二:原式=2()=2(1)=6、计算:分析:可以把题中的每两个加数分解成两个分数之差:,此时,可消中间,留两头进行巧算。原式=()()+()=()=()=四、分组法:计算,+分析:算式中共有2002个分数,从第二个分数开始依次往后数,每四个分数为一组,到为止,共有500组

5、,每组计算结果都是0.原式=+()()+()=+=五、代入法:计算(1+)()(1)()分析:可以把算式中相同的一部分式子,设字母代替,可化繁为简,化难为易。设=A,=B,则原式=(1+A)B(1+B)A=BABAAB=BA=()()=热点习题计算:1、 【1】2、 【】3、 【】4、【】4、 【】6、2+【41】7、 【】8、 【】9、【原式=1+-+=1()+()()+()=1()+()()+()=1=】10、+【从第三个分数开始依次往后数,每8个分数为一组,到最后一个分数为止,共有250组,每组计算结果都是0.所以,原式=+=】11、(1+)()(1+)()【设1+=A,=B,原式=A(

6、B+)(A+)B=】12、+()【原式=+1+2+2+9=(+9)192=95】13、2001年是中国共产党建党80周年,是个有特殊意义的分数。如果下式大于,那么n最小等于多少?【1,n】14、【先对分母用等差数列求和,再整体裂项求和。原式=1=14()+()()=14()=】15、【利用公式变形各项。原式=】(二)分数巧算(复杂的裂项型运算)复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。整数裂项口诀:等差数列数,依次取几个。所有积之和,裂

7、项来求作。后延减前伸,差数除以N。N取什么值,两数相乘积。公差要乘以,因个加上一。需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。一、 整数裂项(1) (2) 【例 1】 计算:【巩固】计算:【例 2】 计算【例 3】 计算11+22+33+9999+100100【巩固】【例 4】 计算:【例 5】【巩固】二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) (2)裂和型运算与裂差型运算的对比:裂

8、差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。【例 6】 填空: , , , 【巩固】计算:【例 7】【巩固】 【例 8】 计算: 【巩固】 【例 9】 【巩固】【例 10】 【巩固】【利用变形,分母=100,分子=(2+1)(2-1)+(4+3)(4-3)(10099)(100-99)=3711199=10150,原式=】课堂测试1、 =2、 计算: 3、5、作业1、2、3、4、5、(三)分数巧算(裂差型运算)分数速算、巧算常用的方法1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不

9、可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。3、循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式“裂差”型运算一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将

10、数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。1、 对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有2、 对于分母上为3个或4个自然数乘积形式的分数,即:,形式的,我们有:或 3、 对于分子不是1的情况我们有:二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都

11、是1的运算。(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。难点:1、分子不是1的分数的裂差变型;2、分母为多个自然数相乘的裂差变型。三、循环小数化分数结论:纯循环小数混循环小数分子循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n个9,其中n等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧; ; ; ,四、整数裂项(1) (2)一、 用裂项法求型分数求和分析:型(为自然数)因为(n为自然数),所以有裂项公式:【例 1】 填空:(1)1-= (2)

12、 (3) (4)(5) (6) (7) (8)【巩固】 。【例 2】 计算:【巩固】计算:【例 3】 计算: _。【巩固】_。【例 4】 计算: 。【巩固】计算:【例 5】 计算:= 。【巩固】计算: 二、用裂项法求型分数求和分析:型。(n,k均为自然数)因为,所以【例 6】 【巩固】计算:【例 7】 计算: 【巩固】计算: 三、用裂项法求型分数求和分析:型(n,k均为自然数)因为,所以【例 8】 求的和【巩固】 【例 9】 计算:【巩固】【例 10】【巩固】 1、 计算:2、 计算:3、 计算:4、5、 计算:6、计算:7、计算: 8、 。9、例1、 练:例2、计算: 练2、计算: 例3、 练3、例4、 . 练4、作业1、2、计算: 3、计算: 4、计算: 5、计算:6、计算:第 39 页 共 39 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服