1、CD、EF是水平放置的电阻可忽略的光滑水平金属导轨,两导轨距离水平地面高度为H,导轨间距为L,在水平导轨区域存在磁感应强度大小为B,方向垂直导轨平面向上的矩形有界匀强磁场(磁场区域为CPQE),如图所示,导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R,将一阻值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端x处.已知导体棒与导轨始终接触良好,重力加速度为g,求(1)电阻R中的最大电流的大小与方向;(2)整个过程中,导体棒中产生的焦耳热;(3)若磁场区域的长度为d,求全程流过导体棒的电量.如图所示,在倾角3
2、0的光滑固定斜面上,相距为d的两平行虚线MN、PQ间分布有大小为B、方向垂直斜面向下的匀强磁场在PQ上方有一质量m、边长L(Ld)的正方形单匝线圈abcd,线圈的电阻值为R,cd边与PQ边平行且相距x现将该线圈自此位置由静止释放,使其沿斜面下滑穿过磁场,在ab边将离开磁场时,线圈已做匀速运动重力加速度为g求:(1)线圈cd边刚进入磁场时的速率v1;(2)线圈进入磁场的过程中,通过ab边的电量q;(3)线圈通过磁场的过程中所产生的焦耳热Q如图所示,以MN为下边界的匀强磁场,磁感应强度大小为B,方向垂直于纸面向外,MN上方有一单匝矩形导线框abcd,其质量为m,电阻为R,ab边长为l1,bc边长为
3、l2,cd边离MN的高度为h现将线框由静止释放,线框下落过程中ab边始终保持水平,且ab边离开磁场前已做匀速直线运动,求线框从静止释放到完全离开磁场的过程中ab边离开磁场时的速度v;通过导线横截面的电荷量q;导线框中产生的热量Q如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为=,导轨平面与水平面的夹角为=30匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3,导体棒的电阻为
4、r=1,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q连接体问题在物理中很重要,下面分析一个情景:如右图所示,两根金属杆AB和CD的长度均为L,电阻均为R,质量分别为3m和m(质量均匀分布),用两根等长的、质量和电阻均不计的、不可伸长的柔软导线将它们连成闭合回路,悬跨在绝缘的、光滑的水平圆棒两侧,AB和CD处于水平。在金属杆AB的下方有高度为H的水平匀强磁场,磁感强度的大小为B,方向与回路平面垂直,此时CD处于磁场中。现从静止开始释放金属杆AB,经过一段时间(AB、CD始终水平),在AB即将进入磁场的上边界时,其加速度为零,此时金属杆CD还处于磁场中,在此过程中金属杆AB上产生的焦耳热为Q.重力加速度为g,试求:(1)金属杆AB即将进入磁场上边界时的速度v1.(2)在此过程中金属杆CD移动的距离h和通过导线截面的电量q.(3)设金属杆AB在磁场中运动的速度为v2,通过计算说明v2大小的可能范围.