1、给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在 直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可 方便地判断p3是否在该直线上。 生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以 得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与
2、b的值都不尽相同。我们希望的 是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的 值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。 遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。 RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用
3、于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: · 有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。 · 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。 · 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。 · 然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。 · 最后,通过估计局内点与模型的错误率来评估模型。 · 上述过程被重复执行固定的次数
4、每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。
整个过程可参考下图:
关于算法的源代码,Ziv Yaniv曾经写一个不错的C++版本,我在关键处增补了注释:
C代码
#include
5、/
/*
* Compute the line parameters [n_x,n_y,a_x,a_y]
* 通过输入的两点来确定所在直线,采用法线向量的方式来表示,以兼容平行或垂直的情况
* 其中n_x,n_y为归一化后,与原点构成的法线向量,a_x,a_y为直线上任意一点
*/
void LineParamEstimator::estimate(std::vector
6、 std::vector
7、 ny*ny); parameters.push_back(nx/norm); parameters.push_back(ny/norm); parameters.push_back(data[0]->x); parameters.push_back(data[0]->y); } /*****************************************************************************/ /* * Compute the line p
8、arameters [n_x,n_y,a_x,a_y]
* 使用最小二乘法,从输入点中拟合出确定直线模型的所需参量
*/
void LineParamEstimator::leastSquaresEstimate(std::vector
9、 meanY, nx, ny, norm; double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix int i, dataSize = data.size(); parameters.clear(); if(data.size()<2) return; meanX = meanY = 0.0; covMat11 = covMat12 =
10、 covMat21 = covMat22 = 0;
for(i=0; i
11、nX/=dataSize; meanY/=dataSize; covMat11 -= dataSize*meanX*meanX; covMat12 -= dataSize*meanX*meanY; covMat22 -= dataSize*meanY*meanY; covMat21 = covMat12; if(covMat11<1e-12) { nx = 1.0; ny = 0.0; } else {
12、 //lamda1 is the largest eigen-value of the covariance matrix //and is used to compute the eigne-vector corresponding to the smallest //eigenvalue, which isn't computed explicitly. double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covM
13、at11-covMat22) + 4*covMat12*covMat12)) / 2.0; nx = -covMat12; ny = lamda1 - covMat22; norm = sqrt(nx*nx + ny*ny); nx/=norm; ny/=norm; } parameters.push_back(nx); parameters.push_back(ny); parameters.push_back(meanX);
14、 parameters.push_back(meanY); } /*****************************************************************************/ /* * Given the line parameters [n_x,n_y,a_x,a_y] check if * [n_x, n_y] dot [data.x-a_x, data.y-a_y] < m_delta * 通过与已知法线的点乘结果,确定待测点与已知直线的匹配程度;结果越小则越符合,为 * 零则表明点在
15、直线上
*/
bool LineParamEstimator::agree(std::vector
16、
C代码
/*****************************************************************************/
template ¶meters, ParameterEsitmator
17、sEstimateData; int numDataObjects = data.size(); int numVotesForBest = -1; int *arr = new int[numForEstimate];// numForEstimate表示拟合模型所需要的最少点数,对本例的直线来说,该值为2 short *curVotes = new short[numDataObjects]; //one if data[i] agrees with the current model, otherwise zero
18、short *bestVotes = new short[numDataObjects]; //one if data[i] agrees with the best model, otherwise zero //there are less data objects than the minimum required for an exact fit if(numDataObjects < numForEstimate) return 0; // 计算所有可能的直线,寻找
19、其中误差最小的解。对于100点的直线拟合来说,大约需要100*99*0.5=4950次运算,复杂度无疑是庞大的。一般采用随机选取子集的方式。 computeAllChoices(paramEstimator,data,numForEstimate, bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr); //compute the least squares estimate using the largest sub
20、 set
for(int j=0; j
21、ete [] bestVotes; delete [] curVotes; return (double)leastSquaresEstimateData.size()/(double)numDataObjects; } 在模型确定以及最大迭代次数允许的情况下,RANSAC总是能找到最优解。经过我的实验,对于包含80%误差的数据集,RANSAC的效果远优于直接的最小二乘法。 RANSAC可以用于哪些场景呢?最著名的莫过于图片的拼接技术。优于镜头的限制,往往需要多张照片才能拍下那种巨幅的风景。在多幅图像合成时, 事先会在待合成的图片中提取一些关键的特征点。计算机视觉的研究表明,不同视角下物体往往可以通过一个透视矩(3X3或2X2)阵的变换而得到。 RANSAC被用于拟合这个模型的参数(矩阵各行列的值),由此便可识别出不同照片中的同一物体。可参考下图: 另外,RANSAC还可以用于图像搜索时的纠错与物体识别定位。下图中,有几条直线是SIFT匹配算法的误判,RANSAC有效地将其识别,并将正确的模型(书本)用线框标注出来:






