ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:134.04KB ,
资源ID:2609687      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2609687.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(间接平差原理.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

间接平差原理.doc

1、(完整word)间接平差原理41 间接平差原理 2学时间接平差法(参数平差法)是通过选定t个与观测值有一定关系的独立未知量作为参数,将每个观测值都分别表达成这t个参数的函数,建立函数模型,按最小二乘原理,用求自由极值的方法解出参数的最或然值,从而求得各观测值的平差值。 例如,在一个三角形中,等精度独立观测了三个角,观测值分别为L1、L2和L3。求此三角形各内角的最或然值。若能选取两个内角的最或然值作为参数 、 ,则可以建立参数与观测值之间的函数关系式 (41-1) 可得 (41-2) 为了计算方便和计算数值的稳定性,通常引入未知参数的近似值,这一点在实际计算中是非常重要的,令 ,则(412)式

2、可写成如下形式: (4-13) 式(4-1-2)叫做误差方程,也可以称为某种意义上的条件方程(包含改正数、观测值和参数,“条件个数=观测值个数”),每个条件方程中仅只含有一个观测值,且系数为1。单纯为消除矛盾, 、 、 可有多组解,为此引入最小二乘原则: 可求得唯一解。因此,间接平差是选取与观测值有一定关系的独立未知量作为参数,建立参数与观测值之间的函数关系,按最小二乘原则,求解未知参数的最或然值,再根据观测值与参数间的函数关系,求出观测值的最或然值,故又称为参数平差。对上述三角形,引入最小二乘原则,要求: ,设观测值为等精度独立观测,则有: 按数学上求自由极值的方法对上式分别求偏导数并令等于

3、零,可得 代入误差方程式,得到观测值的最或然值 此结果显然与采用条件平差方法解算的结果一致,说明只要遵循相同的平差原则、定权方法相同,平差结果与具体平差方法无关. 一般地,间接平差的函数模型为 (41-4) 平差时,为了计算方便和计算的数值稳定性,一般对参数 都取近似值 ,令 (4-15) 代入(4-14)式,并令 (4-1-6) 由此可得误差方程 (4-1-7) 式中 为误差方程的自由项,对于经典间接平差,将未知参数 视为非随机参数,不考虑其先验统计性质,根据(41-5)式,可得平差后 ,由(4-16)式可得 。 间接平差的随机模型为 (41-8) 平差准则为 (419) 间接平差就是在最小

4、二乘准则要求下求出误差方程中的待定参数 ,在数学中是求多元函数的自由极值问题。 一、间接平差一般原理 设平差问题中有n个观测值L,已知其协因数阵 ,必要观测数为t,选定t个独立参数 ,其近似值为 ,观测值L与改正数V之和 ,称为观测量的平差值。按具体平差问题,可列出n个平差值方程为 (i=1,2,3,,n) (4110) 令 则平差值方程的矩阵形式为 (4-111) 令 (41-12) 式中 为参数的充分近似值,于是可得误差方程式为 (41-13) 按最小二乘原理,上式的 必须满足 的要求,因为t个参数为独立量,故可按数学上求函数自由极值的方法,得 转置后得 (4114) 以上所得的(4113

5、)和(4-1-14)式中的待求量是 个 和 个 ,而方程个数也是 个,有唯一解,称此两式为间接平差的基础方程。 解此基础方程,一般是将(41-13)式代入(4-1-14)式,以便先消去 ,得 (4-1-15) 令 上式可简写成 (4-116) 式中系数阵 为满秩矩阵,即 , 有唯一解,上式称为间接平差的法方程。解之,得 (41-17) 或 (4-118) 将求出的 代入误差方程(41-13),即可求得改正数V,从而平差结果为 (4-119) 特别地,当P为对角阵时,即观测值之间相互独立,则法方程(4-116)的纯量形式为 (41-20) 二、按间接平差法求平差值的计算步骤 1根据平差问题的性质

6、,选择t个独立量作为参数; 2。 将每一个观测量的平差值分别表达成所选参数的函数,若函数非线性要将其线性化,列出误差方程(4-113); 3由误差方程系数B和自由项 组成法方程(4-116),法方程个数等于参数的个数t ; 4。 解算法方程,求出参数 ,计算参数的平差值 ; 5由误差方程计算V,求出观测量平差值 ; 6。评定精度. 例4-1 在图4-1所示的水准网中,A、B、C为已知水准点,高差观测值及路线长度如下: = +1.003m, = +0.501m, = +0。503m, = +0。505m; =1km, =2km, =2km, =1km。已知 =11.000m, =11.500m, =12。008m,试用间接平差法求 及 点的高程平差值. 图41 解:1。按题意知必要观测数 =2,选取 、 两点高程 、 为参数,取未知参数的近似值为 、 ,令2km观测为单位权观测,则 。 2根据图形列平差值条件方程式,计算误差方程式如下 代入具体数值,并将改正数以(mm)为单位,则有 可得 、 和 矩阵如下 、 、 3由误差方程系数 和自由项 组成法方程 得 解得 4. 解算法方程,求出参数 ,计算参数的平差值 ; 5由误差方程计算 ,求出观测量平差值 ;

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服