ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:292.51KB ,
资源ID:2573949      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2573949.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(新北师大版第1章特殊的平行四边形全章导学案.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新北师大版第1章特殊的平行四边形全章导学案.doc

1、菱形的性质与判定 导学案第一课时 一、 学习准备:1、 叫做平行四边形2、平行四边形的对边 ,对角 ,邻角 ,对角线 3、一组对边 的四边形是平行四边形,两组对边分别 的四边形是平行四边形,两组对边分别相等的四边形是 。两条对角线 的四边形是平行四边形。学习目标:1掌握菱形概念,知道菱形与平行四边形的关系2理解并掌握菱形的定义及性质1和性质23.会用这些性质进行有关的论证和计算三、自学提示:1、自主学习: 叫做菱形。菱形是 的平行四边形。2、合作探究:例1:已知四边形ABCD是菱形,且AD=BC,求证四边相等。性质1: 例2:已知四边形ABCD是菱形,求证ACBD。性质2: 例3:已知四边形A

2、BCD是菱形,求证AC、BD各平分一组对角。性质3: 例4:在菱形ABCD中,已知AC=6,BD=8,边上的高是4.8,求菱形ABCD的面积。性质4: 注意,性质5:菱形具有 的一切性质。思考:菱形具有而平行四边形不一定具有的性质有哪些?菱形是 图形,对称轴有 条,即两条 所在的直线。四、学习小结:这节课你有哪些收获和体会?五、夯实基础:1、(1)菱形的对角线长为24和10,则菱形的边长为 ,周长为 ,面积为 。 (2)在菱形ABCD中,已知ABC=60,AC=4,则AB= 。(3)菱形的两邻角之比为1:2,边长为2,则菱形的面积为_(4)已知菱形的面积等于80cm2,高等于8cm,则菱形的周

3、长为 .(5)已知菱形ABCD的周长为20cm,A:ABC1:2,则BD= cm.(6)在菱形ABCD中,AEBC于点E,AFCD于点F,且E、F分别为BC、CD的中点,(如图)则EAF等于()A75B60C45D30(7)菱形ABCD,若A:B2:1,CAD的平分线AE和边CD之间的关系是( )A相等B互相垂直且不平分C互相平分且不垂直D垂直且平分(8)已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数六、能力提升:1、已知菱形ABCD的边长为2 cm,BAD120对角线AC、BD相交于点O,试求出菱形对角线的长和面积2、如图,已知菱形ABCD的对角线交于点O,AC=16cm

4、,BD=12cm,求菱形的高菱形的性质与判定 第二课时 一、 学习准备:你还记得菱形的定义吗?菱形有哪些特殊性质?边:_;_角:_;_对角线:_对称性: 二、学习目标:1理解并掌握菱形的定义及两个判定方法,明确菱形证明的三种切入方式;会用这些判定方法进行有关的论证和计算;2在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力三、自学提示:(一)、自主学习:1.(菱形的判定方法一)菱形的定义:有 的 叫做菱形.2.用符号语言可以表示为:四边形ABCD是 四边形 _ _ 四边形 ABCD是菱形3.如图在ABC中,AD平分BAC交BC于D点,过D作DEAC交AB于E点, 过

5、D作DFAB交AC于F点. 求证:(1)四边形AEDF是平行四边形 (2)23 (3)四边形AEDF是菱形(二):合作探究推证菱形判定二、三,并会用该种方法进行有关的证明.1.对角线互相平分的四边形是 四边形,如果两条对角线又互相垂直,那么这个四边形的邻边有什么关系,所以如果平行四边形的对角线互相垂直,那么这个四边形一定是 形。你能用定义证明这个结论吗?(口述你的理由)于是我们等到菱形的判定定理二: 2.用符号语言可以表示为: 3.四条边相等的四边形是平行四边形吗?是菱形吗?你能用定义说明理由吗?于是我们等到菱形的判定定理三: 4.用符号语言可以表示为: 四、学习小结:1.总结分析:三个定理是

6、证明菱形的基础定理,条件对比平行四边形+邻边的数量关系(相等)平行四边形+对角线的位置关系(垂直)四条边的数量关系(相等)。三个定理条件的共同特点:与角无关。五:夯实基础:1.判断题,对的画“”错的画“”(1).对角线互相垂直的四边形是菱形( )(2).一条对角线垂直另一条对角线的四边形是菱形( )(3).对角线互相垂直且平分的四边形是菱形( )(4).对角线相等的四边形是菱形( )2、如图所示,平行四边形ABCD的对角线AC的垂直平分线与AD,BC,AC分别交于E,F,O,求证:四边形AFCE是菱形 六、能力提升:1.“在ABCD中,对角线AC和BD相交于点O,并且AB=9,OB=6,求证:

7、(1)ACBD (2)ABCD是菱形吗?说说你的理由. (3)求四边形ABCD的面积.菱形的性质与判定 第三课时 一、学习准备:知识梳理1:菱形的定义: 菱形的性质: (边) (角) (对角线) (对称性) 菱形的面积等于 知识梳理2:如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于1,2AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求根据他的作图方法可知四边形ADBC一定是 形,你判定的理由是: 的平行四边形是菱形归纳: 的四边形是菱形 二.学习目标:1理解菱形的定义, 掌握菱形的性质和判定;2能运用菱形的性质和判定进行简单的计算与证明三自学提示:(一)

8、自主学习:.菱形两条对角线、边长之间的关系:1. 如图所示,在菱形ABCD中,两条对角线AC6,BD8,则:此菱形的边长为 周长为 此菱形的面积为 此菱形对角线的交点O到AB的距离为 菱形内部(包括边界)任取一点P,使ACP的面积大于6 cm2的概率为 2. 已知菱形的边长是5cm,一条对角线长为8cm,则另一条对角线长为_ _cm3 菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=_cm,BD=_cm4若一个菱形的边长为2,则这个菱形两条对角线长的平方和为 (二)合作探究:有一个内角为60的菱形:1. 如图如图所示,在菱形ABCD中,若AB6,DAC60则:BD

9、AC S菱形ABCD 归纳:有一个内角为60的菱形,短的对角线等于 ;长的对角线等于 2. 菱形的两邻角之比为1:2,边长为2,则菱形的面积为_四、学习小结:五、夯实基础:3. 已知:如图,菱形ABCD中,B=60,AB=4,则以AC为边长的正方形ACEF的周长为 4(11 南京)如图,菱形ABCD的边长是2,E是AB中点,且DEAB,则S菱形ABCD= cm25(10 荷泽) 如图,菱形ABCD中,B60,AB2,E、F分别是BC、CD的中点,连结AE、EF、AF,则AEF的周长为 cm第3题图 第4题图 第5题图六、能力提升:已知:如图,AD平分BAC,DEAB,DFAC试判断四边形AFE

10、D的形状,并加以证明矩形的性质与判定 第一课时 一、学习准备:回顾平行四边形有哪些性质?然后填空。1、平行四边形的_相等。表示方法:若四边形ABCD是平行四边形,则_;2、平行四边形的_相等。表示方法:若四边形ABCD是平行四边形,则_;3、平行四边形的对角线_.表示方法:在 ABCD中,AC与BD相交于O,则_4、平行四边形的对称性:平行四边形是_对称图形,而不是_对称图形,对角线的交点是平行四边形的_.二、学习目标: 1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系 2会初步运用矩形的概念和性质来解决有关问题 3渗透运动联系、从量变到质变的观点三、自学提示:(一)自主学习:平行四边

11、形活动框架在变化过程中,哪些量发生了变化?哪些量没有变化?从中得到哪些结论?你能试着说明结论是否成立?矩形的一条对角线把矩形分成两个什么三角形?矩形的两条对角线把矩形分成四个什么样的三角形? 1矩形的定义:有一个角是直角的平行四边形,叫做矩形。由此可见,矩形是特殊的 ,它具有平行四边形的所有性质。2结合上面两个图形说说矩形有哪些平行四边形不具有的特殊性质? 3证明:矩形的四个角都是直角 已知:如图, 图形:画在下面求证:_ 证明:证明:矩形对角线相等已知:如图, 图形:画在下面求证: 证明: (二)合作探究:问题一 如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问

12、题二 将目光锁定在RtABC中,你能发现它有什么特殊的性质吗? 证明:“直角三角形斜边上的中线等于斜边的一半”已知: 图形:画在下面求证: 证明:问题三 上面结论的逆命题是: 。是否正确?请给予证明。四、学习小结:五、夯实基础:已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB。 求证:AOB是等边三角形。(注意表达格式完整性与逻辑性)拓展与延伸:本题若将“AC=2AB”改为“BOC=120”,你能获得有关这个矩形的哪些结论?六、能力提升已知:如图,E为矩形ABCD内一点,且EB=EC。求证:EA=ED.矩形的性质与判定 第二课时 一、学习准备:1.矩形是轴对称图形,它有_条对称轴

13、2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,边BC=8cm,则ABO的周长为_二、学习目标:1.会证明矩形的判定定理。2.能运用矩形的判定定理进行计算与证明。3.能运用矩形的性质定理与判定定理进行综合推理与证明。三、自学提示:(一)自主学习:矩形是特殊的平行四边形,怎样判定一个平行四边形是矩形呢?请同学们说出最基本的方法:(用定义) 1、 知识点一:探究“对角线相等的平行四边形是矩形。” 如图在ABCD中,对角线AC、BD相交于O,如果AC=BD 求证:ABCD是矩形。证明:ABCD是平行四边形AB=CD , AB CD ( )ABC+DCB=180在ABC和DC

14、B中 = = = ABCDCB ( )ABC=DCBABC= ABCD是矩形 ( )(二)合作探究:2、知识点二:探究“三个角都是直角的四边形是矩形。” 已知: 在四边形ABCD中A=B=C=90求证:四边形ABCD矩形证明: A+B+C+D= 度而A=B=C=90度 D= = = = 四边形ABCD是 平行四边形 ( ) 四边形ABCD矩形 ( )四、学习小结:这节课你有哪些收获和体会?五、夯实基础:1工人师傅做铝合金窗框分下面三个步骤进行: 先截出两对符合规格的铝合金窗料(如图),使ABCD,EFGH; 摆放成如图的四边形,则这时窗框的形状是 形,根据的数学道理是: ; 将直角尺靠紧窗框的

15、一个角(如图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图),说明窗框合格,这时窗框是 形,根据的数学道理是: 2、 如图,ABCD中,AB= 6,BC= 8,AC= 10 ,求证 : ABCD是矩形。3、如上图已知:ABCD的AC、BD对角线相交于O,AOB是等边三角形,AB=4cm,求这个平行四边形的面积。六、能力提升:ABC中,点O是AC边上一动点,过O点作直线MN/BC,设MN交BCA的平分线于点E,交BCA的外角平分线于点F,(1)试说明EO=OF的理由。(2)当点O运动到何处时,四边形AECF是矩形?并说明你的结论。矩形的性质与判定 第三课时 一、 学习准备: 1、矩

16、形的定义:有一个角是 的平行四边形,叫做矩形。2、矩形的性质: 3、矩形的判定: 二、学习目标:1、通过知识回顾,掌握矩形的定义、性质和判定定理;2、会用矩形的性质和判定解决简单问题;3、通过一题多解、一题多变等形式,纵向复习几何知识,培养生举一反三,综合运用知识的能力;4、通过学生积极分析问题、展示学习成果等活动,使学生体验到学习知识的乐趣。三、自学提示:1、自主学习:折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,如图,若AB=2,BC=1,求AG。2、合作探究:如图,BO是直角ABC斜边上的中线,请以O点为旋转中心,将ABC旋转180得一四边形ABCD,

17、试判断ABCD是什么四边形,试说明BOAC 四、学习小结:五、夯实基础:1、矩形具有而一般平行四边形不具有的性质是( )A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分 2在平行四边形ABCD 中,增加下列条件中的一个,就能断定它是矩形的是()AAC180BABBC CACBD DAC2AB3、具备下列条件的四边形,不能断定四边形是矩形的是()A三个角都是直角B四个角都相等C对角线相等的平行四边形 D对角线垂直且相等3、如左图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PFAC于F,PEBD于E,则PE+PF的值为( ) A、B、C、D2、4、已知:如右图,平行四边

18、形ABCD的四个内角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形。六、能力提升:1、四边形ABCD的对角线相交于O,OAOBOCOD,则它是形,若AOB60,那么ABAC2、矩形ABCD的周长是56,对角线相交于O,OAB与OBC的差是4,则AD ,矩形ABCD的面积= 。3、已知:如图在ABCD中,O为边AB的中点,且AOD=BOC求证:ABCD是矩形正方形的性质与判定 第一课时 一、学习准备:1、有一组_相等并且有一个角是_的平行四边形叫做正方形。有一个角是_的菱形叫做正方形;一组_相等的矩形叫做正方形。2、正方形既是_,又是_,所以它具有_ 和 _ 的性质:(1)正方形

19、的四个角都是_ ,四条边都 _ ;(2)正方形的对角线_且 _,每条对角线平分_;(3)正方形是_图形,_的交点是它的对称中心;(4)正方形是_图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴。如上图,画出该正方形的对称轴。3、如图,正方形ABCD的对角线把它分成了_个三角形,它们是_三角形,它们全等吗?请简单说明理由_。二、学习目标:1理解正方形的定义, 掌握正方形的性质和判定;2能运用正方形的性质和判定进行简单的计算与证明三、自学提示:(一)自主学习:1、正方形具有而一般菱形不具有的性质是 ( )A. 四条边都相等 B. 对角线互相垂直平分 C. 对角线相等 D. 每一条

20、对角线平分一组对角2、正方形具有而一般矩形不一定具有的性质是 ( )A. 四个角相等 B. 四条边相等 C. 对角线互相平分 D. 对角线相等3、已知一个正方形的边长为2cm,则对角线长为_。4、已知一正方形的对角线长为2cm,则它的边长为_。5、若正方形的一条对角线长为4cm,则正方形的周长为_,面积为_;对角线的交点到边的距离为_。(二)合作探究:6、顺次连接正方形各边中点,得4个等腰直角三角形,则每个小三角形的面积为原正方形面积的 _ 。ABCD7、如图,四边形ABCD是正方形,CAB是多少度?为什么?至少用两种方法说明理由。四、学习小结:五、夯实基础:1、如上图正方形有哪些性质?(1)

21、边的性质:_。(2)角的性质:_。(3)对角线的性质:_。2、正方形是轴对称图形,它的对称轴有_条,正方形也中心对称图形,它的对称中心是_。3、已知一正方形的对角线长为6cm,则它的边长为_。ABCDE4、选择题(1)正方形的边和对角线构成的等腰直角三角形共有( )A、4个 B、6个 C、8个 D、10个(2)如图,在正方形ABCD中,DAE25,AE交对角线BD于E点,FDEABC那么BEC等于( )A、45 B、60 C、70 D、75(3)如图,在正方形ABCD中作等边AEF,则AFD的度数为( )A、40 B、75 C、50 D、555、如图,在正方形ABCD是,E为对角线AC上一点,

22、连结EB、ED。ABCDEF(1)求证:BECDEC。(2)延长BE交AD于点F,若DEB140,求AFE的度数。六、能力提升: 1、如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 图5 图6 图7 图82. 如图6,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、An分别是正方形的中心,则n个这样的正方形重叠部分的面积和为 3. 边长为1的正方形ABCD绕点A逆时针旋转30得到正方形ABCD,两图叠成一个“蝶形风筝”(如图7所示阴影部分),则这个风筝的面积是 4.如图8,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形ABCD

23、,边BC与DC交于点O,则四边形ABOD的周长是 正方形的性质与判定 第二课时 一、学习准备:(1)正方形是怎样的平行四边形?(2)正方形是怎样的矩形?(3)正方形是怎样的菱形?(4)判定一个平行四边形是正方形,还应具备什么条件?(5)判定一个矩形是正方形还应具备什么条件?(6)判定一个菱形是正方形还应具备什么条件?正方形的判定方法 (1)有一组_的矩形是正方形。(2)有一个_的菱形是正方形。注:判定正方形的一般顺序:先证明它是平行四边形再证明它是菱形(或矩形)最后证明它是正方形。二、学习目标:1. 掌握正方形的判定方法。 2. 运用正方形的性质和判定进行有关的论证和计算。三、自学提示:(一)

24、自主学习:1、下列说法中错误的是( )A、对角线相等的菱形是正方形 B、有一组邻边相等的矩形是正方形C、四条边都相等的四边形是正方法 D、有一个角为直角的菱形是正方形2、已知四边形两对角线:互相垂直;相等;互相平分。具备条件_可得平行四边形;具备条件_可得矩形;具备条件_ 可得是菱形;具备条件_可得正方形。(填序号)(二)合作探究:3、已知四边形ABCD是菱形,当满足条件_时,它成为正方形(填上你认为正确的一个条件即可).4、在RtABC中,ACB=90,CD平分ACB,DEBC,DFAC,垂足分别是E,F。求证:(1)四边形CFDE是平行四边形。(2)四边形CFDE是矩形或菱形(任选一项)。

25、(3)四边形CFDE是正方形。四、学习小结:五、夯实基础:1、在箭头上填上适当的条件正方形菱形矩形正方形( 2、在平行四边形ABCD中,对角线AC、BD相交于点O,当有_条件时,可判定它是正方形。3、下列判断正确的是( )A、四边相等的四边形是正方形 B、四个角相等的四边形是正方形 C、对角线互相垂直的平行四边形是正方形 D、对角线互相垂直、平分且相等的四边形是正方形4、如图,已知E、F、G、H分别是正方形ABCD四条边上的点,且AEBFCGDH。求证:四边形EFGH为正方形。BCDEFGHADCBAFGE5、(选做题)如图,在正方形ABCD中,E是对角线AC上的一点,EFBC于F,EGCD于G。(1)证明:四边形EFCG是正方形(2)如果AC6cm,AE2EC,求四边形EFCG的面积。六、能力提升:1.如图1,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长是 2. (10 柳州)如图2,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的处,点A对应点为,且=3,则AM的长是 第1题图 第2题图 第3题图 第4题图、 A5个 B.4个 C.3个 D.2个4. 如图,等边EDC在正方形ABCD内,连结EA、EB,则AEB ;ACE .8

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服