ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:79.50KB ,
资源ID:2572580      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2572580.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(圆锥曲线的最大值、定问题.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆锥曲线的最大值、定问题.doc

1、圆锥曲线最值、定值、范围一、圆锥曲线的最值问题方法1:定义转化法根据圆锥曲线的定义列方程;将最值问题转化为距离问题求解例1、已知点F是双曲线1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|PA|的最小值为_方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:求与直线平行的圆锥曲线的切线;求出两平行线的距离即为所求的最值例2、求椭圆y21上的点到直线yx2的距离的最大值和最小值,并求取得最值时椭圆上点的坐标方法3:参数法(函数法) 选取合适的参数表示曲线上点的坐标; 求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆

2、y21上的一个动点,则Sxy的最大值为_方法4:基本不等式法将最值用变量表示 利用基本不等式求得表达式的最值例4、求椭圆y21内接矩形ABCD面积的最大值二、圆锥曲线的范围问题方法1:曲线几何性质法由几何性质建立关系式;化简关系式求解例1、已知双曲线1(a0,b0)的左,右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|4|PF2|,则此双曲线中的取值范围是_方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零 联立曲线方程,消元后求判别式;根据判别式大于零、小于零或等于零结合曲线性质求解例2、在平面

3、直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆y21有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数m,使得向量与共线?如果存在,求m值;如果不存在,请说明理由三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题 根据特殊情况确定出定值或定点;对确定出来的定值或定点进行一般情况的证明例1、已知双曲线C:x21,过圆O:x2y22上任意一点作圆的切线l,若l交双曲线于A,B两点,证明:AOB的大小为定值方法2:引进参数法定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(

4、或值)即是定点(或定值). 引进参数表示变化量;研究变化的量与参数何时没有关系,找到定值或定点例2、如图所示,曲线C1:1,曲线C2:y24x,过曲线C1的右焦点F2作一条与x轴不垂直的直线,分别与曲线C1,C2依次交于B,C,D,E四点若G为CD的中点、H为BE的中点,证明为定值课堂知识运用训练1设P是曲线y24x上的一个动点,则点P到点A(1,1)的距离与点P到x1直线的距离之和的最小值为() A. B. C. D.2椭圆b2x2a2y2a2b2(ab0)和圆x2y22有四个交点,其中c为椭圆的半焦距,则椭圆的范围为() A. B0 C. D.3设F是椭圆1的右焦点,且椭圆上至少有21个不

5、同的点Pi(i1,2,3,),使|FP1|,|FP2|,|FP3|,组成公差为d的等差数列,则d的取值范围为_4过抛物线y22px(p0)上一定点P(x0,y0)(y00)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,则的值为_5椭圆b2x2a2y2a2b2(ab0)的左焦点为F,过F点的直线l交椭圆于A,B两点,P为线段AB的中点,当PFO的面积最大时,求直线l的方程6已知O过定点A(0,p)(p0),圆心O在抛物线C:x22py(p0)上运动,MN为圆O在轴上所截得的弦(1)当O点运动时,|MN|是否有变化?并证明你的结论;(2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O的位置关系,并说明理由5 圆锥曲线最值、定值、范围

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服