1、2022-2023学年高一上数学期末模拟试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(本大题共12小题,共60分) 1.已知 是定义在上的奇函数,且当时,,那么 A. B. C. D. 2.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是( ) A平面ABC⊥
2、平面BED B.平面ABC⊥平面ABD C.平面ABC⊥平面ADC D.平面ABD⊥平面BDC 3.已知函数,且f(5a﹣2)>﹣f(a﹣2),则a的取值范围是( ) A.(0,+∞) B.(﹣∞,0) C. D. 4.下列函数中,在区间上是增函数是 A. B. C. D. 5.已知是第三象限角,则是 A.第一象限角 B.第二象限角 C.第一或第四象限角 D.第二或第四象限角 6.已知,且,则() A. B. C. D. 7.角的终边过点,则等于 A. B. C. D. 8.已知定义在R上的奇函数f(x)满足,当时,,则( ) A. B. C. D
3、 9.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是 A.平面 B.与是异面直线 C. D. 10.设命题:,则的否定为() A. B. C. D. 11.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是() A.德语 B.法语 C.日语 D.英语 12.下列函数中
4、最小正周期是且是奇函数的是() A. B. C. D. 二、填空题(本大题共4小题,共20分) 13.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度. 每户每月用电量 电价 不超过210度的部分 0.5元/度 超过210度但不超过400度的部分 0.6元/度 超过400度的部分 0.8元/度 14.已知函数和函数的图像相交于三点,则的面积为__________. 15.角的终边经过点,且,则________. 16.已知角的终边上一点P与点关于y轴对称,角
5、的终边上一点Q与点A关于原点O中心对称,则______ 三、解答题(本大题共6小题,共70分) 17.已知函数f(x)=+ln(5-x)的定义域为A,集合B={x|2x-a≥4}. (Ⅰ)当a=1时,求集合A∩B; (Ⅱ)若A∪B=B,求实数a的取值范围. 18.在平面直角坐标系中,已知直线. (1)若直线在轴上的截距为-2,求实数的值,并写出直线的截距式方程; (2)若过点且平行于直线的直线的方程为:,求实数的值,并求出两条平行直线之间的距离. 19.如图,在正方体中,、分别为、的中点,与交于点.求证: (1); (2)平面平面. 20.如图,公路围成的是一块顶角为
6、的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园. (1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标; (2)三条公路围成的工业园区的面积恰为,求公路所在直线方程. 21.如图所示,在多面体中,四边形是正方形,, 为的中点. (1)求证:平面; (2)求证:平面平面. 22.已知函数(且),再从条件①、条件②这两个条件中选择一个作为已知. (1)判断函数的奇偶性,说明理由; (2)判断函数在上的单调性,并用单调性定义证明; (3)若不大于,直接写出实数m的取值范围.
7、条件①:,;条件②:,. 注:如果选择条件①和条件②分别解答,按第一个解答计分. 参考答案 一、选择题(本大题共12小题,共60分) 1、C 【解析】由题意得,,故,故选C 考点:分段函数的应用. 2、A 【解析】利用面面垂直的判定定理逐一判断即可 【详解】连接DE,BE.因为E为对角线AC的中点, 且AB=BC,AD=CD, 所以DE⊥AC,BE⊥AC 因为DE∩BE=E, 所以AC⊥面BDE AC⊂面ABC, 所以平面ABC⊥平面BED, 故选A 【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理 3、D 【解析】由定义
8、可求函数的奇偶性,进而将所求不等式转化为f(5a﹣2)>f(﹣a+2),结合函数的单调性可得关于a的不等式,从而可求出a的取值范围. 【详解】解:根据题意,函数,其定义域为R, 又由f(﹣x)f(x),f(x)为奇函数, 又,函数y=9x+1为增函数,则f(x)在R上单调递增; f(5a﹣2)>﹣f(a﹣2)⇒f(5a﹣2)>f(﹣a+2)⇒5a﹣2>﹣a+2,解可得, 故选:D. 【点睛】关键点睛:本题的关键是由奇偶性转化已知不等式,再求出函数单调性求出关于a的不等式. 4、A 【解析】由题意得函数在上为增函数,函数在上都为减函数.选A 5、D 【解析】因为是第三象限角,
9、所以, 所以, 当为偶数时,是第二象限角, 当为奇数时,是第四象限角. 故选:D. 6、B 【解析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解. 【详解】,, . 故选:B 7、B 【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==. 8、B 【解析】 由题意得,因为,则, 所以函数表示以为周期的周期函数, 又因为为奇函数,所以, 所以,, , 所以,故选B. 9、D 【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点, 所以对于A,AC与AB夹角为60°
10、即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误; 对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误; 对于C,A1C1,B1E是异面直线;故C错误; 对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1; 故选D. 10、B 【解析】本题根据题意直接写出命题的否定即可. 【详解】解:因为命题:, 所以的否定:, 故选:B 【点睛】本题考查含有一个量词的命题的否定,是基础题. 11、B 【解
11、析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果. 【详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意; 若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语; 若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语. 故选:B. 12、A 【解析】
12、根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项. 【详解】A选项,的最小正周期是,且是奇函数,A正确. B选项,的最小正周期是,且是奇函数,B错误. C选项,的最小正周期为,且是奇函数,C错误. D选项,的最小正周期是,且是偶函数,D错误. 故选:A 二、填空题(本大题共4小题,共20分) 13、410 【解析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解. 【详解】由题意,电费(元)关于用电量(度)的函数为: , 即, 当时,, 若,,则,解得. 故答案为:410. 14、 【解析】解出三点坐标,即可求得三角形面积. 【
13、详解】由题:, ,所以,, 所以, . 故答案为: 15、 【解析】由题意利用任意角的三角函数的定义直接计算 【详解】角的终边经过点,且, 解得. 故答案为: 16、0 【解析】根据对称,求出P、Q坐标,根据三角函数定义求出﹒ 【详解】解:角终边上一点与点关于轴对称, 角的终边上一点与点关于原点中心对称, 由三角函数的定义可知, ﹒ 故答案为:0 三、解答题(本大题共6小题,共70分) 17、(I);(II). 【解析】(Ⅰ)可求出定义域,从而得出,并可求出集合,从而得出时的集合,然后进行交集的运算即可; (Ⅱ)根据即可得出,从而得出,从而得出实数的
14、取值范围 【详解】解:(Ⅰ)要使f(x)有意义,则: ; 解得-4≤x<5; ∴A={x|-4≤x<5}; B={x|x≥a+2},a=1时,B={x|x≥3}; ∴A∩B={x|3≤x<5}; (Ⅱ)∵A∪B=B; ∴A⊆B; ∴a+2≤-4; ∴a≤-6; ∴实数a的取值范围为(-∞,-6]. 【点睛】考查函数的定义域的概念及求法,交集的概念及运算,以及子集的概念,属于基础题. 18、 (1) 直线的截距式方程为:;(2) . 【解析】(1)直线在轴上的截距为,等价于直线经过点,代入直线方程得,所以,从而可得直线的一般式方程,再化为截距式即可;(2)把点代入直线
15、的方程为可求得,由两直线平行得:,所以 ,因为两条平行直线之间的距离就是点到直线的距离,所以由点到直线距离公式可得结果. 试题解析:(1)因为直线在轴上的截距为-2,所以直线经过点,代入直线方程得,所以. 所以直线的方程为,当时,, 所以直线的截距式方程为:. (2)把点代入直线的方程为:,求得 由两直线平行得:,所以 因为两条平行直线之间的距离就是点到直线的距离,所以. 19、(1)证明见解析 (2)证明见解析 【解析】(1)证明出四边形为平行四边形,可证得结论成立; (2)证明出平面,平面,利用面面平行的判定定理可证得结论成立. 【小问1详解】 证明:在正方体中
16、且, 因为、分别为、的中点,则且, 所以,四边形为平行四边形,则. 【小问2详解】 证明:因为四边形为正方形,,则为的中点, 因为为中点,则, 平面,平面,所以,平面, 因为,平面,平面,所以,平面, 因为,因此,平面平面. 20、 (1) ;(2) . 【解析】(1)以为坐标原点, 所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系.根据条件求出直线的方程,设出点坐标,代点到直线的距离公式即可求出所求; (2)由(1)及题意设出直线的方程后,即可求得点的横坐标,与点的纵坐标,由 求得后,即可求解. 【详解】(1)以为坐标原点, 所在直线为轴,过点且垂直于的直
17、线为轴, 建立如图所示的平面直角坐标系 由题意可设点,且直线的斜率为,并经过点, 故直线的方程为:, 又因点到的距离为,所以,解得或(舍去) 所以点坐标为. (2)由题意可知直线的斜率一定存在,故设其直线方程为:, 与直线的方程:,联立后解得:, 对直线方程:,令,得, 所以,解得, 所以直线方程为:,即:. 【点睛】本题以直线方程的相关知识为背景,旨在考查学生分析和解决问题的能力,属于中档题. 21、 (1) 见解析;(2) 见解析. 【解析】(1)设与交于点,连接易证得四边形为平行四边形, 所以,进而得证; (2)先
18、证得平面,再证得⊥平面,又,得平面,从而证得平面,即可证得. 试题解析: (1)设与交于点,连接. ∵分别为中点,∴ ∴,∴ 四边形为平行四边形,所以,又∴平面 ∴平面 (2)平面 ⊥平面,又平面 平面,又平面, 所以平面平面. 22、(1)答案见解析 (2)答案见解析(3)答案见解析 【解析】(1)定义域均为,代入化简可得出与的关系,从而判断奇偶性;(2)利用定义任取,且,作差判断的正负,可得出单调性;(3)根据奇偶性和单调性可得到与2的不等关系,求解可得的范围. 【小问1详解】 解:选择条件①:. 函数是偶函数,理由如下: 的定义域为,对任意,则. 因为, 所以函数是偶函数. 选择条件②:. 函数是奇函数,理由如下: 的定义域为,对任意,则. 因为, 所以函数是奇函数. 【小问2详解】 选择条件①:. 在上是增函数. 任取,且,则. 因为, 所以. 所以 ,即 所以在上是增函数. 选择条件②:. 在上减函数. 任取,且. 因为, 所以. 所以 ,即 所以在上是减函数. 【小问3详解】 选择条件①:. 实数的取值范围是. 选择条件②:. 实数的取值范围是.






