ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:1.38MB ,
资源ID:2564854      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2564854.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(广东省惠州市博罗县博罗中学2022-2023学年数学高一上期末联考模拟试题含解析.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

广东省惠州市博罗县博罗中学2022-2023学年数学高一上期末联考模拟试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1若,则A.B.C.D.2 “对任意,都有”的否定形式为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得3已知函数(且),若函数图象上关于原点

2、对称的点至少有3对,则实数a的取值范围是( ).A.B.C.D.4已知直线ax+by+c=0的图象如图,则()A.若c0,则a0,b0B.若c0,则a0C.若c0,b0D.若c0,b05下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22xcos22x6下列函数中为奇函数,且在定义域上是增函数是()A.B.C.D.7如图,把边长为4的正方形ABCD沿对角线AC折起,当直线BD和平面ABC所成的角为时,三棱锥的体积为( )A.B.C.D.8某公司位员工的月工资(单位:元)为,其均值和方差分别为和,若从下月起每

3、位员工的月工资增加元,则这位员工下月工资的均值和方差分别为A.,B.,C,D.,9函数的部分图象是()A.B.C.D.10已知集合,则()A.B.C.D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11函数的值域为_.12在用二分法求方程的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为_.13的定义域为_;若,则_14函数的最大值为,其图象相邻两条对称轴之间的距离为(1)求函数的解析式;(2)设,且,求的值15无论实数k取何值,直线kx-y+2+2k0恒过定点_三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16已知函

4、数.(1)求定义域;(2)判断函数的奇偶性,并证明你的结论;(3)若对于恒成立,求实数的最小值.17已知且.(1)求的解析式;(2)解关于x不等式:.18已知角终边上有一点,且.(1)求的值,并求与的值;(2)化简并求的值.19 (1)已知,先化简f(),再求f()的值;(2)若已知sin(x),且0x,求sin的值.20为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,求:(1)从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函

5、数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时候后,学生才能回到教室.21已知函数,(1)若,求函数的值域;(2)已知,且对任意的,不等式恒成立,求的取值范围参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】,.选C.2、D【解析】全称命题的否定是特称命题,据此得到答案.【详解】全称命题的否定是特称命题,则“对任意,都有”的否定形式为:存在,使得.故选:D.【点睛】本题考查了全称命题的否定,属于简单题.3、A【解析】由于关于原点对称得

6、函数为,由题意可得,与的图像在的交点至少有3对,结合函数图象,列出满足要求的不等式,即可得出结果.【详解】关于原点对称得函数为所以与的图像在的交点至少有3对,可知,如图所示,当时,则故实数a的取值范围为故选:A【点睛】本题考查函数的对称性,难点在于将问题转换为与的图像在的交点至少有3对,考查了运算求解能力和逻辑推理能力,属于难题.4、D【解析】由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如图,k0,即-0,因为-0,-0,所以ac0,bc0.若c0,b0;若c0,则a0,b0;故选D.5、D【解析】A中,周期为,不是偶函数;B中,周期为,函数为奇函数;C中,周期为,

7、函数为奇函数;D中,周期为,函数为偶函数6、D【解析】结合基本初等函数的单调性及奇偶性分别检验各选项即可判断【详解】对于函数,定义域为,且,所以函数为偶函数,不符合题意;对于在定义域上不单调,不符合题意;对于在定义域上不单调,不符合题意;对于,由幂函数的性质可知,函数在定义域上为单调递增的奇函数,符合题意故选:D7、C【解析】取的中点为,连接,过作的垂线,垂足为,可以证明平面、平面,求出的面积后利用公式求出三棱锥的体积.【详解】取的中点为,连接,过作的垂线,垂足为.因为为等腰直角三角形,故,同理,而,故平面,而平面,故平面平面,因为平面平面,平面,故平面,故为直线BD和平面ABC所成的角,所以

8、.在等腰直角形中,因为,故,同理,故为等边三角形,故.故.故选:C.【点睛】思路点睛:线面角的构造,往往需要根据面面垂直来构建线面垂直,而后者来自线线垂直,注意对称的图形蕴含着垂直关系,另外三棱锥体积的计算,需选择合适的顶点和底面.8、D【解析】均值为;方差为,故选D.考点:数据样本的均值与方差.9、C【解析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.10、C【解析】直接利用交集的运算法则即可.【详解】,.故选:.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横

9、线上)11、【解析】先求出,再结合二次函数的内容求解.【详解】由得,故当时,有最小值,当时,有最大值.故答案为:.12、【解析】根据二分法,取区间中点值,而,所以,故判定根区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号零点肯定在异号的区间13、 .; .3.【解析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【详解】空一:由函数解析

10、式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;14、(1)(2)【解析】(1)根据函数的最值求出,由相邻两条对称轴之间的距离为,确定函数的周期,进而求出值;(2)由,求出,利用诱导公式结合的范围求出,的值,即可求出结论.【小问1详解】函数的最大值为5,所以A+15,即A4函数图象的相邻两条对称轴之间的距离为,最小正周期T,2故函数的解析式为.【小问2详解】,则由,则,所以所以15、【解析】由kx-y+2+2k0,得(x+2)k+(2-y)0,由此能求出无论实数k取何值,直线kx-y+2+2k0恒过定点【详解】kx-y+2+2k0,(x+2)k+(2-y)0,解方程组,得无论实

11、数k取何值,直线kx-y+2+2k0恒过定点故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)函数为偶函数,证明见解析(3)【解析】(1)解不等式即可得答案;(2)根据奇偶性的定义直接判断即可;(3)根据题意,将问题转化为且在均恒成立,再分离常数,结合函数单调性与基本不等式求解即可.【小问1详解】解:由题知,解得,所以函数的定义域为【小问2详解】解:函数为偶函数,证明如下:由(1)知函数定义域关于原点对称,所以,所以函数为偶函数.【小问3详解】解:因为对于恒成立,即对于恒成立,所以且在均恒成立,所以且在均恒成立,由于,当且仅当成立,在上单调递增,

12、故,所以所以且,即.所以实数的取值范围是,最小值17、(1)(2)【解析】(1)根据已知条件联立方程组求出,进而求出函数的解析式;(2)根据已知条件求出,进而得出不等式,利用换元法及一元二次不等式得出的范围,再根据指数与对数互化解指数不等式即可.【小问1详解】由,得,解得.所以的解析式为.【小问2详解】由(2)知,所以,由,得,即,令,则,解得或所以,即,解得.所以不等式的解集为.18、(1),(2)【解析】(1)直接利用三角函数的定义依次计算得到答案.(2)根据诱导公式化简得到原式等于,计算得到答案.【小问1详解】,解得.故,.【小问2详解】.19、 (1),;(2).【解析】(1)利用诱导

13、公式化简f()即可;(2)x和互余,所以sin=cos,再结合已知条件即可求解.【详解】(1);f();(2),.20、(1),(2)【解析】分析】(1)利用函数图像,借助于待定系数法,求出函数解析式,(2)结合图像可知由药物释放完毕后的函数解析式中的可求得结果【详解】(1)由图可知直线的斜率为,所以图像中线段的方程为,因为点在曲线上,所以,解得,所以从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为,(2)因为药物释放过程中室内药量一直在增加,即使药量小于0.25毫克,学生也不能进入教室,所以只能当药物释放完毕,室内药量减少到0.25毫克以下时,学生方可进入教室,即,解得,所以从药物释放开始,至少需要经过小时,学生才能回到教室21、(1);(2)当时,;当且时,.【解析】(1)由题设,令则,即可求值域.(2)令,将问题转化为在上恒成立,再应用对勾函数的性质,讨论、,分别求出的取值范围【小问1详解】因为,设,则,因为,所以,即当时,当或时,所以的值域为.【小问2详解】因为,所以,又可化成,因为,所以,所以,令,则,依题意,时,恒成立,设,当时,当且仅当,故;当,时,在上单调递增,当时,故,综上所述:当时,;当且时,.【点睛】关键点点睛:应用换元法及参变分离,将问题转化为二次函数求值域,及由不等式恒成立、对勾函数的最值求参数范围.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服