ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.01MB ,
资源ID:2563449      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2563449.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(江西省上饶市“山江湖”协作体2022-2023学年高一上数学期末质量检测试题含解析.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江西省上饶市“山江湖”协作体2022-2023学年高一上数学期末质量检测试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1如图,边长为的正方形是一个水平放置的平面图形的直观图,则图形的面积是A.

2、B.C.D.2设命题:,则的否定为()A.B.C.D.3以下元素的全体不能够构成集合的是A.中国古代四大发明B.周长为的三角形C.方程的实数解D.地球上的小河流4函数的部分图象是()A.B.C.D.5已知中,点M是线段BC(含端点)上的一点,且,则的取值范围是()A.B.C.D.6要得到函数的图象,只需将函数的图象向( )平移( )个单位长度A.左 B.右 C.左 D.右 7已知函数, 且,则满足条件的的值得个数是A.1B.2C.3D.48要得到函数的图像, 需要将函数的图像()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位9若函数是偶函数,则满足的实数的取值范围是A

3、.B.C.D.10已知函数是定义在上的奇函数,当时,则不等式的解集为()A.B.C.(D.11设集合,若,则a的取值范围是()A.B.C.D.12已知幂函数的图象过点,则的值为()A.B.1C.2D.4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13已知,是方程的两根,则_14函数在上是x的减函数,则实数a的取值范围是_15已知函数,则使函数有零点的实数的取值范围是_16_.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17已知M(1,1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQMN,PNMQ.(2)

4、若点Q在x轴上,且NQPNPQ,求直线MQ的倾斜角.18已知向量,且,满足关系.(1)求向量,的数量积用k表示的解析式;(2)求向量与夹角的最大值.19为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量(单位:)与时间(单位:)函数关系为,当消毒后,测量得药物释放量等于;而实验表明,当药物释放量小于对人体无害(1)求的值;(2)若使用该消毒剂对房间进行消毒,求对人体有害的时间有多长?20设直线l的方程为.(1)若l在两坐标轴上的截距相等,求直线l的方程(2)若l在两坐标轴上的截距互为相反数,求a.21设全集为R,集合Px|3x13,非空集合Qx|a1x2a5,(1)

5、若a10,求PQ; ;(2)若,求实数a的取值范围22已知函数最小正周期是.(1)求的值;(2)求证:当时.参考答案一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据直观图画出原图可得答案.【详解】由直观图画出原图,如图,因为,所以,则图形的面积是.故选:D2、B【解析】本题根据题意直接写出命题的否定即可.【详解】解:因为命题:,所以的否定:,故选:B【点睛】本题考查含有一个量词的命题的否定,是基础题.3、D【解析】地球上的小河流不确定,因此不能够构成集合,选D.4、C【解析】首先判断函数的奇

6、偶性,即可排除AD,又,即可排除B.【详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.5、D【解析】如图所示,建立直角坐标系,则,利用向量的坐标运算可得再利用数量积运算,可得利用数量积性质可得,可得再利用,可得,即可得出【详解】如图所示,建立直角坐标系则,及四边形为矩形,即点在直线上,即(当且仅当或时取等号),综上可得:故选:【点睛】本题考查了向量的坐标运算、数量积运算及其性质、不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题6、C【解析】因为,由此可得结果.【详解】因为,所以其图象可由向左平移个单位长度得

7、到.故选:C.7、D【解析】令则即当时,当时,则令,由图得共有个点故选8、A【解析】直接按照三角函数图像的平移即可求解.【详解】,所以是左移个单位.故选:A9、D【解析】结合为偶函数,建立等式,利用对数计算性质,计算m值,结合单调性,建立不等式,计算x范围,即可【详解】,,令,则,则,当,递增,结合复合函数单调性单调递增,故偶函数在上是增函数,所以由,得,.【点睛】本道题考查了偶函数性质和函数单调性知识,结合偶函数,计算m值,利用单调性,建立关于x的不等式,即可10、C【解析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可.【详解】因为当时,且函数是定义在上的奇函数,所

8、以时,所以,作出函数图象:所以函数是上的单调递增,又因为不等式,所以,即,故选:C.11、D【解析】根据,由集合A,B有公共元素求解.【详解】集合,因为,所以集合A,B有公共元素,所以故选:D12、C【解析】设出幂函数的解析式,利用给定点求出解析式即可计算作答.【详解】依题意,设,则有,解得,于得,所以.故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、#【解析】将所求式利用两角和的正弦与两角差的余弦公式展开,然后根据商数关系弦化切,最后结合韦达定理即可求解.【详解】解:因为,是方程的两根,所以,所以,故答案为:.14、【解析】首先保证真数位置在上恒成立,

9、得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.15、【解析】令,进而作出的图象,然后通过数形结合求得答案.【详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.16、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱

10、导公式的应用,考查两角和的余弦,是基础题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)设Q(x,y),根据PQMN得出,然后由PNMQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由NQPNPQ得出kNQkNP,解方程求出Q的坐标,然后即可得出结果.【小问1详解】设Q(x,y),由已知得kMN3,又PQMN,可得kMNkPQ1 即(x3)由已知得kPN2,又PNMQ,可得kPNkMQ,即(x1)联立求解得x0,y1,Q(0,1);【小问2详解】设Q(x,0),NQPNPQ,kNQkNP,又kNQ,kNP2,2

11、解得x1,Q(1,0),又M(1,1),MQx轴,故直线MQ的倾斜角为90.18、(1),(2)【解析】(1)化简即得;(2)设与的夹角为,求出,再求函数的最值得解.【详解】(1)由已知.,.(2)设与的夹角为,则,当即时,取到最小值为.又,与夹角的最大值为.【点睛】本题主要考查向量的数量积运算,考查向量夹角的计算和函数最值的求解,意在考查学生对这些知识的理解掌握水平和计算能力.19、(1);(2)【解析】(1)把代入即可求得的值;(2)根据,通过分段讨论列出不等式组,从而求解.【详解】(1)由题意可知,故;(2)因为,所以,又因为时,药物释放量对人体有害,所以或,解得或,所以,由,故对人体有

12、害的时间为20、(1)3xy0或xy20.(2)a2或a2【解析】(1)直线在两坐标轴上的截距相等,有两种情况:截距为0和截距不为0,分别求出两种情况下的a的值,即得直线l的方程;(2)直线在两坐标轴上的截距互为相反数,由(1)可知有,解方程可得a。【详解】(1)当直线过原点时,该直线在x轴和y轴上截距为零,a2,方程即为,当直线不经过原点时,截距存在且均不为0.,即a11.a0,方程即为xy20.综上,直线l的方程为3xy0或xy20.(2)由,得a20或a11,a2或a2.【点睛】第一个问中,直线在两坐标轴上的截距相等,注意不要忽略截距为0的情况。21、(1),;(2) .【解析】(1)把的值代入求出集合,再由交集、补集的运算求出,;(2)由得,再由子集的定义列出不等式组,求出的范围【详解】(1)当时,又集合,所以,或,则;(2)由得, 因为,则,解得,综上所述:实数的取值范围是.22、(1)2;(2)证明见解析【解析】(1)解方程即得解;(2)利用三角函数的图象和性质,结合不等式逐步求出函数的最值即得证.【小问1详解】解:由题得.【小问2详解】证明:,因为,所以当时.即得证.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服