1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,五边形内接于,若,则的度数是( )ABCD2若一元二次方程的两根为和,则的值等于( )A1BCD3已知,且的面积为,周长是的周长的,则边上的高等于(
2、)ABCD4下列根式中,是最简二次根式的是( )ABCD5反比例函数的图象位于( )A第一、三象限B第二、四象限C第二、三象限D第一、二象限6某个几何体的三视图如图所示,该几何体是( )ABCD7在正方形网格中,ABC的位置如图所示,则cosB的值为( ) ABCD18张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为()Ay3500xBx3500yCyDy9如图,在ABC中,AD=AC,延长CD至B,使BD=CD,DEBC交AB于点E,EC交AD于点F下列四个结论:EB=EC;BC=2AD;ABCFCD;若AC=6,则DF=1其中正确的个
3、数有()A1B2C1D410将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于( )A-3B1C4D711方程x2-x-1=0的根是( )A,B,C,D没有实数根12下列判断正确的是()A任意掷一枚质地均匀的硬币10次,一定有5次正面向上B天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C“篮球队员在罚球线上投篮一次,投中”为随机事件D“a是实数,|a|0”是不可能事件二、填空题(每题4分,共24分)13若函数是反比例函数,则_14若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_cm115如图,AB是O的直径,AC是O的切线,A为切点,连接
4、BC交O于点D,若C=50,则AOD=_16如图示一些小正方体木块所搭的几何体,从正面和从左面看到的图形,则搭建该几何体最多需要 块正方体木块17抛物线的顶点坐标是_.18某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为_.三、解答题(共78分)19(8分)夏季多雨,在山坡处出现了滑坡,为了测量山体滑坡的坡面的长度,探测队在距离坡底点米处的点用热气球进行数据监测,当热气球垂直上升到点时观察滑坡的终端点时,俯角为,当热气球继续垂直上升90米到达点时,探测到滑坡的始
5、端点,俯角为,若滑坡的山体坡角,求山体滑坡的坡面的长度(参考数据:,结果精确到0.1米)20(8分)如图,A,B,C为O上的定点连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90,交O于点D,连接BD若AB6cm,AC2cm,记A,M两点间距离为xcm,B,D两点间的距离为ycm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小东探究的过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表,补全表格:x/cm00.250.47123456y/cm1.430.6601.312.592.76 1.660(2)在平面直角坐标
6、系xOy中,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BDAC时,AM的长度约为 cm21(8分)某校垃圾分类“督察部”从4名学生会干部(2男2女)随机选取2名学生会干部进行督查,请用枚举、列表或画树状图的方法求出恰好选中两名男生的概率22(10分)小红想利用阳光下的影长测量学校旗杆AB的高度如图,她在地面上竖直立一根2米长的标杆CD,某一时刻测得其影长DE1.2米,此时旗杆AB在阳光下的投影BF4.8米,ABBD,CDBD请你根据相关信息,求旗杆AB的高23(10分)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段A
7、B)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离24(10分) “一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,
8、打算分线上和线下两种方式销售(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%求m的值25(12分)如图,在平面直角坐标系中,抛物线的顶点坐标为,与轴交于点,与轴交于点,.(1)求二次函数的表达式;(2)过点作平行于轴,交抛物线于点,点为抛物线上的一点(点在上方),作平行于轴交于点,当点在何位置时
9、,四边形的面积最大?并求出最大面积. 26如图,阳光下,小亮的身高如图中线段所示,他在地面上的影子如图中线段所示,线段表示旗杆的高,线段表示一堵高墙请你在图中画出旗杆在同一时刻阳光照射下形成的影子;如果小亮的身高,他的影子,旗杆的高,旗杆与高墙的距离,请求出旗杆的影子落在墙上的长度参考答案一、选择题(每题4分,共48分)1、B【分析】利用圆内接四边形对角互补得到B+ADC=180,E+ACD=180,然后利用三角形内角和求出ADC +ACD=180-CAD,从而使问题得解.【详解】解:由题意:B+ADC=180,E+ACD=180B+ADC+E+ACD=360又ADC +ACD=180-CAD
10、=180-35=145B+E+145=360B+E=故选:B【点睛】本题考查圆内接四边形对角互补和三角形内角和定理,掌握性质正确推理计算是本题的解题关键.2、B【分析】先将一元二次方程变为一般式,然后根据根与系数的关系即可得出结论【详解】解:将变形为根据根与系数的关系:故选B【点睛】此题考查的是一元二次方程根与系数的关系,掌握两根之积等于是解决此题的关键3、B【分析】根据相似三角形的周长比等于相似比可得两个三角形的相似比,根据相似三角形的面积比等于相似比的平方可求出ABC的面积,进而可求出AB边上的高【详解】,周长是的周长的,与的相似比为,SABC=,SABC=24,AB=8,AB边上的高=6
11、,故选:B【点睛】本题考查相似三角形的性质,相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方;熟练掌握相关性质是解题关键4、D【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),逐一判断即可得答案.【详解】A.=,故该选项不是最简二次根式,不符合题意,B.=,故该选项不是最简二次根式,不符合题意,C.=,故该选项不是最简二次根式,不符合题意,D.是最简二次根式,符合题意,故选:D.【点睛】本题考查了对最简二次根式的理解,被开方数不含有能开的尽方的因式或因数,被开方数不含有分数的二次根式叫做最简二次根式;能熟练地运用定义进行判断是解此题的关
12、键5、B【解析】根据反比例函数的比例系数来判断图象所在的象限,k0,位于一、三象限,k0,位于二、四象限【详解】解:反比例函数的比例系数-60,函数图象过二、四象限故选:B【点睛】本题考查的知识点是反比例函数的图象及其性质,熟记比例系数与图象位置的关系是解此题的关键6、D【解析】根据几何体的三视图判断即可【详解】由三视图可知:该几何体为圆锥故选D【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大7、A【解析】作ADBC,可得AD=BD=5,利用勾股定理求得AB,再由余弦函数的定义求解.【详解】作ADBC于点D,则AD=5,BD=5,AB=5,cosB= .故选
13、A .【点睛】本题考查锐角三角函数的定义.8、C【解析】根据矩形草坪的面积=长乘宽,得 ,得 .故选C.9、C【分析】根据垂直平分线的性质可证;是错误的;推导出2组角相等可证ABCFCD,从而判断;根据ABCFCD可推导出【详解】BD=CD,DEBCED是BC的垂直平分线EB=EC,EBC是等腰三角形,正确B=FCDAD=ACACB=FDCABCFCD,正确AC=6,DF=1,正确是错误的故选:C【点睛】本题考查等腰三角形的性质和相似的证明求解,解题关键是推导出三角形EBC是等腰三角形10、B【分析】先把常数项移到方程右侧,两边加上4,利用完全平方公式得到(x-2)2=1,从而得到m=-2,n
14、=1,然后计算m+n即可【详解】x2-4x+3=0,x2-4x=-3x2-4x+4=-3+4,(x-2)2=1,即n=1故选B【点睛】本题考查了解一元二次方程的应用,解题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时)11、C【解析】先求出根的判别式b2-4ac=(-1)2-41(-1)=50,然后根据一元二次方程的求根公式为,求出这个方程的根是x=.故选C12、C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
15、,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|0”是必然事件,故此选项错误故选C【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键二、填空题(每题4分,共24分)13、-1【分析】根据反比例函数的定义可求出m的值【详解】解:函数是反比例函数解得,故答案为:-1【点睛】本题考查的知识点是反比例函数的定义,比较基础,易于掌握14、15【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】圆锥的底面半径为3cm,高为4cm圆锥的母线长圆锥的侧面展开图的面积故填:.【点睛】本题考查了圆锥的计算:圆锥的侧面展开
16、图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、80【详解】解:AC是O的切线,ABAC,C=50,B=90C=40,OA=OB,ODB=B=40,AOD=80故答案为8016、【解析】根据俯视图标数法可得,最多有1块;故答案是1点睛:三视图是指一个立体图形从上面、正面、侧面(一般为左侧)三个方向看到的图形,首先我们要分清三个概念:排、列、层,比较好理解,就像我们教室的座位一样,横着的为排,竖着的为列,上下的为层,如图所示的立体图形,共有两排、三列、两层仔细观察三视图,可以发现在每一图中,并不能同时看到排、列、层,比如正视图看不到排,这个很好理解,比如在教室里,
17、如果第一排的同学个子非常高,那么后面的同学都被挡住了,我们无法从正面看到后面的同学,也就无法确定有几排所以,我们可以知道正视图可看到列和层,俯视图可看到排和层列,侧视图可看到排和层17、 (0,-1)【分析】抛物线的解析式为:y=ax2+k,其顶点坐标是(0,k),可以确定抛物线的顶点坐标【详解】抛物线的顶点坐标是(0,-1).18、20%.【分析】一般用增长后的量=增长前的量(1+增长率),再根据题意列出方程5(1+x)27.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)27.2,解得:x10.220%,x22.2(不合题意舍去).答:这两年中投入资金的平
18、均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.三、解答题(共78分)19、的长为177.2米【分析】过点作,垂足为,作,垂足为,设,先根据的正切值得出,再根据的正切值得出,进而计算出,最后根据列出方程求解即得【详解】如下图,过点作,垂足为,作,垂足为设在中,四边形为矩形,在中,在中,四边形为矩形解得答:的长为177.2米【点睛】本题是解直角三角形题型,考查了特殊角三角函数,解题关键是将文字语言转化为几何语言,并找出等量关系列方程20、(1)2.41;(2)详见解析;(3)1.38或4.1(本题答案不唯一)【分析】(1)描出图象后,测量x4时,
19、y的值,即可求解;(2)描点作图即可;(3)当BDAC时,即:y2,即图中点A、B的位置,即可求解【详解】(1)描出后图象后,x4时,测得y2.41(答案不唯一),故答案是2.41;(2)图象如下图所示: 当x4时,测量得:y2.41;(3)当BDAC时,y2,即图中点A、B的位置,从图中测量可得:xA1.38,xB4.1,故:答案为:1.38或4.1【点睛】此题考查圆的综合题,函数的作图,解题关键在于通过描点的方法作图,再根据题意测量出相应的长度21、【分析】用列表法或树状图法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率【详解】用列表法得出所有可能出现的情况如下:共有1
20、2种等可能的情况,其中两人都是男生的有2种,P(两人都是男生)【点睛】本题考查求概率,熟练掌握列表法或树状图法是解题的关键22、旗杆AB的高为8m【分析】证明ABFCDE,然后利用相似比计算AB的长【详解】ABBD,CDBD,AFBCED,而ABFCDE90,ABFCDE,即,AB8(m)答:旗杆AB的高为8m【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影平行投影中物体与投影面平行时的投影是全等的23、(1)见解析;(2)见解析;(3)8米【解析】【试题分析】(1)点B在地面上的投影为M故连接MB,并延长交OP于点P.点P即为所求;(2
21、)连接PD,并延长交OM于点N.CN即为所求;(3)根据相似三角形的性质,易得:,即,解得从而得求.【试题解析】如图: 如图: ,即,解得即路灯灯泡P到地面的距离是8米【方法点睛】本题目是一道关于中心投影的问题,涉及到如何确定点光源,相似三角形的判定,相似三角形的性质,难度中等.24、(1)2400万件;(2)1【分析】(1)设该公司计划在线下销售量为x万件,由题意得关于x的一元一次不等式,求解即可;(2)以中旬销售总金额比上旬销售总金额提高了m%为等量关系,得关于m的一元二次方程,求解,并根据问题的实际意义作出取舍即可【详解】(1)设该公司计划在线下销售量为x万件,则3000x1%x解得:x
22、2400答:该公司计划在线下销售量最多为2400万件;(2)由题意得:240(1+m%)100(1m%)+(1)240(1+m%)100240100(1+m%)化简得:m21m0解得:m10(不合题意,舍去),m21m的值为1【点睛】本题主要考查一元一次不等式和一元二次方程的实际应用,找到题目中的等量关系和不等量关系,是解题的关键.25、(1);(2)点的坐标为时,【分析】(1)根据题目已知条件,可以由顶点坐标及A点坐标先求出二次函数顶点式,进而转化为一般式即可;(2)根据题意,先求出直线AB的解析式,再设出点P和D坐标,进而先得出四边形的面积表达式,即可求得面积最大值.【详解】(1)顶点坐标
23、为,设抛物线解析式为,抛物线与轴交于点,;(2)当时,设直线的解析式为,直线的解析式为.设,.,中,对称轴为,当,即点的坐标为时,.【点睛】本题主要考查了二次函数解析式及四边形面积的最值,熟练掌握解析式的求法以及最值的求法是解决本题的关键,在求最值的时候注意将对称轴与自变量的取值范围进行对比,进而判断是在何处取最大值.26、(1)作图见解析;(2)米. 【分析】(1)连接AC,过D点作AC的平行线即可;(2)过M作MNDE于N,利用相似三角形列出比例式求出旗杆的高度即可【详解】(1)如图所示,线段MG和GE是旗杆在阳光下形成的影子(2)过点M作MNDE于点N.设旗杆的影子落在墙上的高度为x m,由题意得DMNACB,.又AB1.6 m,BC2.4 m,DNDENE(15x)m,MNEG16 m,解得x.答:旗杆的影子落在墙上的高度为m.【点睛】本题考查了相似三角形的知识,解题的关键是正确的构造直角三角形
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100